透過您的圖書館登入
IP:3.142.114.245
  • 學位論文

雙波長光子晶體平板微共振腔之數值分析

Numerical Analysis of Dual-wavelength Photonic Crystal Slab Microcavities

指導教授 : 楊志忠
共同指導教授 : 江衍偉(Yean-Woei Kiang)

摘要


本論文以模擬方式探討雙波長光子晶體平板微共振腔之輻射特性。此結構之雙波長為對應到藍光與黃光波長,兩互補色光能夠混合成為白光進而應用在照明上。本論文裡我們利用時域有限差分法作為數值模擬的工具。為設計雙波長光子晶體平板微共振腔,首先探討合適的光子晶體平板微共振腔型式,使之有兩個共振模態,同時對應之共振頻率能夠接近互補色光。接著藉由調整微共振腔周圍空氣洞的大小或位置探討其和輻射特性之間的關係。此調整可使兩共振頻率分開並接近藍光與黃光。接著也探討雙波長光子晶體平板耦合微共振腔之輻射特性。耦合微共振腔能夠各自調整周圍空氣洞的參數去影響本身的輻射特性,進而有更大之選擇性去設計雙波長元件。光子晶體微共振腔可以提高介質平板的發光效率,利用此被動元件結合主動發光半導體材料將可應用在高效率白光光源的設計上。

關鍵字

雙波長 微共振腔 光子晶體

並列摘要


In this thesis, the radiation characteristics of dual-wavelength photonic crystal slab microcavities are numerically investigated. Such devices with dual wavelengths corresponding to blue and yellow light can provide white light for lighting purpose. The finite-difference time-domain method is the simulation tool throughout this thesis. In the design of dual-wavelength photonic crystal microcavity, we first look for the appropriate form of microcavity that including two resonant modes close to complementary colors (blue and yellow). Then, we investigate the dependence of radiation characteristics on the sizes and locations of air holes around the microcavity. By varying the geometry of the microcaviy, the two resonant frequencies can be further separated in the spectrum. The radiation characteristics of dual-wavelength photonic crystal slab coupled microcavities are also studied. It has more flexibility to design this dual-wavelength coupled-microcavity device since the radiation characteristics of each microcavity can be individually modified by the neighboring holes. Photonic crystal slab microcavities can be used to improve the efficiency of light extraction from the dielectric slab. Such a passive structure can be incorporated with an active light-emitting semiconductor to yield a good white light source.

並列關鍵字

photonic crystal microcavity dual-wavelength

參考文獻


[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 58, pp.2059-2062 (1987).
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., 58, pp.2486-2489 (1987).
[3] J. Smajic, “Design and optimization of an achromatic photonic crystal bend,” Opt. Exp., vol. 11, pp.1378-1384 (2003).
[4] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve and J. D. Joannopoulos, “Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic crystal,” Science, 282, pp.274-276 (1998).
[5] S. Fan, P. R. Villeneuve, J. D. Joannopoulos and H. A. Haus, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett., 80, pp.960-963 (1998).

延伸閱讀