透過您的圖書館登入
IP:3.135.194.251
  • 學位論文

奈米四氧化三鐵粉體之合成與分析

Synthesis and Characterization of Nanocrystalline Magnetite Powders

指導教授 : 吳乃立

摘要


本實驗利用電凝聚法製造奈米晶體氧化鐵,此氧化物的微結構成長過程可大略分成三階段: 缺陷粒子的成核與成長,聚集,粗粒化。其反應機制牽涉到了在自由粒子的成核與成長和骨架的粗化之間的競爭。此競爭造成了晶粒大小在成長過程中的成長平台。另外,利用改良的電凝聚法亦合成了超微氧化鐵粒子(直徑小於10 nm) 。此粒子展現了超順磁特性,其飽和磁化率為64.5 emu/g。此晶體特性由XRD, TEM, DLS, SQUID鑑定分析。接著,利用電解液中添加聚乙烯醇製造出磁流體。聚乙烯醇會抑制晶體的成長使晶粒大小降至5 nm。此磁流體亦顯現出超順磁特性,由於聚乙烯醇的包覆及晶體些微氧化,其飽和磁化率降至4.57 emu/g。

並列摘要


Nanocrystalline magnetite powders were synthesized by an electrocoagulation technique and the microstructure of the oxide powder was found to evolve in roughly three stages: formation and growth of severely defective colloidal crystallites, agglomeration, and coarsening. A mechanism involving competition between nucleation and growth of free colloids and coarsening of the skeletal framework was proposed to explain the temporary level-off in crystallite size during the synthesis. A modified method was developed to synthesize ultrafine magnetite (less than 10 nm) revealing superparamagnetism with saturation magnetization of 64.5 emu/g. The crystallites were characterized by XRD, TEM, DLS, and SQUID. The ferrofluid was also synthesized in the presence of PVA. The PVA will inhibit the growth of magnetite and the magnetite crystallite size reduced to 5 nm. The particles also show a superparamagnetic behavior with saturation magnetization of 64.5 emu/g. to 4.57 emu/g due to the PVA-coated layer and the oxidation.

參考文獻


[1] R. M. Cornell and U. Schwertmann, “ The Iron Oxides”, VCH, Weinheim, 1996, pp. 28-30.
[2] A. R. David, H. G. M. Edwaeds, D. W. Farwell, and D. L. A. de Faria, “Raman spectroscopic analysis of ancient eqyptian pigments”, Archaeometry, 43 (4), 461-473(2001).
[3] J. Weerd, G. D. Smith, S. Firtha, and R. J. H. Clark, “Identifcation of black pigments on prehistoric Southwest American potsherds by infrared and Raman microscopy”, Journal of Archaeological Science, 31, 1429-1437(2004).
[4] K. Yamaguchi, K. Matsumoto, and T. Fujii, “ Magnetic anisotropy by ferromagnetic particles aligment in a magnetic field”, Journal of Applied Physics, 67 (9), 4493-4495 (1990).
[5] K. T. Wu, P. C. Kuo, Y. D. Yao, and E. H. Tsai, “Magnetic and optical properties of Fe3O4 nanoparticles ferrofluids prepared by coprecipitation technique”, IEEE Transactions on Magnetics, 37(4) 2651-2653 (2001).

延伸閱讀