透過您的圖書館登入
IP:3.129.211.87
  • 學位論文

熱電製冷散熱模組性能之研究

Investigation and Analysis of Thermoelectric Cooling Module

指導教授 : 陳希立

摘要


由於電子元件的性能不斷提昇,所產生的發熱功率也隨之增加,加上製程技術的進步,使其體積愈來愈小,容易溫度過高影響其性能。熱電製冷(Thermoelectric cooling)技術係藉由調整輸入電流控制其冷端Peltier效應之吸熱量來降低熱源溫度,具有控制容易與體積小之優點,故適於電子散熱之用。本研究首先以理論方式分析熱電冷卻器之性能,並建立一套實驗方法求出性能參數。接著整合熱電冷卻器於氣冷散熱模組與水冷散熱模組之中,藉由實驗與理論的熱阻模型分析熱源加熱功率、熱電冷卻器輸入電流與熱源面積大小對於熱電散熱模組性能的影響,並進而提出可提升散熱效能之操作範圍。結果顯示欲使其COP大於1,則冷熱端溫差必須控制在10℃或更低;而在散熱模組實驗方面,固定輸入電流下散熱模組總熱阻會隨著加熱功率提高而上升,而在固定加熱功率下則隨電流增加而下降至最低點,再隨電流增加而上升,最低點在水冷熱電模組40㎜×40㎜加熱塊輸入電流為6~7A時,總熱阻-1.05℃/W。可提升散熱效果的最高加熱功率為水冷熱電模組在7A時的75W。而熱源面積與熱電冷卻器冷端面積不一時將增加擴散熱阻與額外吸熱量。實驗結果並顯示所建立的理論分析模式在熱電冷卻器冷端未與熱源接觸區域絕熱良好,且熱沉底部和熱端接觸區域溫度均勻的情況下非常符合,而在其他與前述狀況接近的條件下亦可得到相當程度的準確性。

並列摘要


The growth of chip performance and manufacturing technology results in high power dissipation and high operating temperature. Thermoelectric cooling device is suitable for electronic cooling with the advantages of sensitive temperature control and small size. This paper presents a theoretical analysis of the performance of thermoelectric cooler (TEC), and an experimental methodology for the thermoelectric parameters. The performance experiment result shows that COP of the TEC is greater than 1 if the temperature difference between cold and hot side of thermoelectric cooler is less than 10℃. Then TEC is applied into air cooling module or water cooling module to become TEC air cooling module or TEC water cooling module. The influences of heating power, input electrical current and heat source area on the performance of cooling module are investigated by means of thermal resistance model. Then the applicative range is given. The experimental result shows the total thermal resistance increases with the increasing heating power; while applying a fixed heating power there exists an optimum input current that the total thermal resistance is minimum, in water TEC module the optimum current is about 6~7A and the lowest total thermal resistance is -1.05℃/W. The water cooling module with TEC works better than which without TEC until heating power reaches 75W. It is found that there exists extra heat absorbed from the environment due to the difference of heat source area and TEC cold side area. The experimental result fits well with the theoretical analysis of thermal resistance model under the circumstances of good heat insulation of the rest area of TEC cold side that is not contacted with the heat source and uniform temperature of heat sink area that is contacted with the hot side of TEC. So the theoretical analysis provides a quite consonant prediction of the performance of TEC cooling module with operating conditions close to the former twos.

參考文獻


15.邱治凱,「毛細熱板性能之研究」,碩士論文,國立臺灣大學機械工程學研究所,民國九十四年六月(2005)。
1.“Assembly and Packaging,” in The International Technology Roadmap for Semiconductors, 2005 ed: Semiconductor Industry Association, 2005.
3.Jaeger, R.C., “Development of Low Temperature CMOS for High Performance Computer Systems,” IEEE International Conference on Computer Design: VLSI in Computers, pp. 128-130, 1986.
4.Taur, Y. and Nowak, E.J., “CMOS Devices Below 0.1 pm: How High Will Performance Go?”, Electron Devices Meeting Technical Digest, pp. 215-218, 1997.
9.Chu, R. C., Gupta, O. R., Hwang, U. P., Moran, K. P., and Simons, R. E., 1969, ‘‘Liquid Cooling Technology for High-Performance Packages and Systems,’’ IBM TR 00.1945.

被引用紀錄


陳育瑋(2007)。建構居家環境之無線網路監控系統〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.10336

延伸閱讀