透過您的圖書館登入
IP:3.140.242.165
  • 學位論文

蒸氣壓縮循環式電子散熱系統之性能研究

Investigation of Vapor Compression Cooling System for Electronic Elements

指導教授 : 陳希立

摘要


隨著電子元件不斷地朝向高性能以及輕薄短小的方向發展,造成單位面積的發熱量愈來愈高,導致近年來各式散熱設備快速發展,而因應未來朝向高功率元件的發展趨勢,散熱模組也多以液態工作流體沸騰或冷凝的相變化方式來達到快速移除熱量之目的。在相關的散熱系統開發中,蒸氣壓縮循環式散熱系統是當中散熱能力最為優秀的方式,從相關文獻可以發現,該散熱系統之COP相當高,且散熱能力高達268W以上,而整個系統甚至可以使用微流道型式的蒸發器與冷凝器並小型化至符合NB內部的容納空間。   本研究為實驗室自行開發一套蒸氣壓縮循環式電子散熱系統,並規劃完整的實驗方法與流程,分析各部分元件在不同的參數下對系統性能的影響;包含了壓力調節閥開度、膨脹閥開度、加熱功率、風扇轉速、以及熱源溫度控制等相關參數。而實驗結果顯示出本研究所開發之散熱系統最大散熱(冷凍)能力為325W,COP最高可達2.4,較其它類型散熱模組表現都佳,未來若能增大冷凝器風扇轉速以及改良蒸發器內流道設計與壓縮機變頻運轉的話,更能提升本研究系統的性能表現。

並列摘要


The cooling of high power components in electronic products is uniquely challenging due to the increasing power in a narrow area. As a result, more powerful and efficient thermal solutions may be required in order to achieve higher power dissipation.   This dissertation experimentally investigates the thermal performances of the vapor compression cooling system(VCCS)for electronic elements. The VCCS includes a compressor, condenser, expansion valve , and two evaporators. All of these components are designed for a vapor compression cycle with R-134a as the working fluid. Especially the two evaporators were simulated to dissipate the heat generated from CPU and GPU respectively. A complete system was built and tested in order to determine overall system feasibility and performance.   Experimental results obtained with the prototype system demonstrate its feasibility and performance for use in cooling compact electronic devices. The cooling capacity of the VCCS investigated varied from 275W to 375W, with a COP of 1.9 to 2.4, at pressure ratios of 1.9 to 2.8. The thermal resistance of the evaporator was ranged from 0.12 to 0.21 oC/W. Finally, in order to avoid the destruction of the electronic devices, this research adopts dynamic fan speed to control the temperature of the heat source, which is varid from 1500 to 1725rpm.

參考文獻


1. “Assembly and Packaging,” in The International Technology Roadmap for Semiconductors, 2005 ed: Semiconductor Industry Association, 2005.
3. Jaeger, R.C., “Development of Low Temperature CMOS for High Performance Computer Systems,” IEEE International Conference on Computer Design: VLSI in Computers, pp. 128-130, 1986.
4. Taur, Y. and Nowak, E.J., “CMOS Devices Below 0.1 pm: How High Will Performance Go?”, Electron Devices Meeting Technical Digest, pp. 215-218, 1997.
6. D. Strassberg, "Cooling Hot Microprocessor," EDN, Vol. 39, pp. 40-50, 1994.
8. Chu, R. C., Gupta, O. R., Hwang, U. P., Moran, K. P., and Simons, R. E., 1969, “Liquid Cooling Technology for High-Performance Packages and Systems,” IBM TR 00.1945.

被引用紀錄


吳孟勳(2008)。微流道蒸氣壓縮循環電子散熱系統〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.10509
黃喬正(2011)。蒸氣壓縮循環系統應用於電子散熱之可行性分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1307201116472600
郭奇寰(2012)。雙蒸發器之蒸氣壓縮循環應用於電子散熱的可行性分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2407201221530300

延伸閱讀