透過您的圖書館登入
IP:3.141.199.243
  • 學位論文

磁黏滯式線性致動器之設計開發與特性研究

Development and Characteristic Study of a Linear Magnetorheological Actuator

指導教授 : 黃光裕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


磁黏滯液體(Magnetorheological Fluid ,MR-fluid)是一種由導磁微粒與載液組成的液體,可以透過磁場來改變其黏滯度,被應用在減振和制動裝置上。本論文利用磁黏滯液體受到磁場變化時所產生的內聚力變化的現象來設計開發主動式線性致動裝置。首先根據磁黏滯致動器功能需求,提出液囊和多樣化磁迴路之設計概念。並透過理論模型以及電腦輔助分析方式,分析探討磁迴路設計和操作參數對通過磁黏滯液體磁場強度之影響。最後以實驗測試對致動器之位移、致動力、及反應速度進行觀察和量測。致動前,致動器驅動電流與磁迴路之工作間隙成正比關係;致動後磁黏滯致動器可產生穩定之致動力。而磁黏滯液體的殘留特黏現象可藉由磁場的消除和壓縮彈簧力予以解除,以提高回復速度。

並列摘要


Magnetorheological Fluids, MR-fluids, normally consist of iron powder suspended in some carrier fluids. The viscosity and the yield stress of MR-fluids can be controlled by the applied magnetic filed, thus the main applications of MR-fluids are dampers and breakers. By utilizing the condensation force of the MR-fluids under the influence of the magnetic field, an active linear actuator is designed and developed in this thesis. According to the functional requirement, the design concepts of bladder and diverse magnetic loop are derived. Through the theoretical model and computer assister analysis, the influence of the design and operating parameters on the field strength through the MR-fluids and studied and analyzed. Finally, through the experimental testings, the displacement, the actuation force, and the reaction speed of the MR-actuator are comprehensively inspected and measured. During the pre-actuation phase, the driving current is linearly dependent on the air gap of the magnetic loop. During the actuation phase, MR-actuator can provide a stable push force. The remnant super-strong viscosity situation of the MR-fluids can be relieved by removing the magnetic filed and using compressive spring, which can increase the recovery speed

參考文獻


[1] Suzumori, K. and Kawahara, N., “Microactuators”,電学論E, 122巻12号, 2002.
[3] Niino, T., Egawa, S., Kimura, H., and Higuchi, T., “Electrostatic artificial muscle: compact, high-power linearactuators with multiple-layer structures”, Micro Electro Mechanical Systems, 1994, MEMS '94, Proceedings, IEEE Workshop on, Volume, Issue, 1994, pp.130-135.
[4] Pelrine, R., Kornbluh, R., and Chiba, S., “Artificial Muscle for Small Robots and Other Micromechanical Devices”, 電気学会論文誌E(センサ・マイクロマシン部門誌), Vol. 122, No. 2, 2002, pp.97-102.
[8] Fernando, D. G., Koo, J. H., and Mehdi, A., “A Review of the State of the Art in Magnetorheological Fluid Technologies – Part I--MR fluid and MR fluid models”, The Shock and Vibration Digest, Vol. 38, No. 3, 2006, pp.203-219.
[9] Blaya, J. A. and Herr, H., "Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait", IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, Vol. 12, No. 1, 2004, pp.24-31.

被引用紀錄


林雅凰(2016)。磁流變液式致動器之設計開發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201601188

延伸閱讀