透過您的圖書館登入
IP:3.144.189.177
  • 學位論文

介電質屏蔽放電噴射電漿處理還原氧化石墨烯/聚吡咯/殼聚醣奈米複合超級電容

Dielectric barrier discharge plasma jet (DBDjet) processed reduced graphene oxide/polypyrrole/chitosan nanocomposite supercapacitors

指導教授 : 陳建彰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


利用奈米複合材料還原氧化石墨烯 (reduced graphene oxide, rGO) 、 聚吡咯 (polypyrrole, PPy) 與粘合劑殼聚醣 (chitosan, CS)混合,將絲網印刷於N2常壓噴射電漿(atmospheric pressure plasma jet, APPJ)處理之碳布基材,並將處理過之碳布通過介電質屏蔽放電噴射電漿 (dielectric barrier discharge plasma jet, DBDjet) 之後處理,最終與凝膠態電解質組裝成超級電容 (supercapacitors, SC)。評估並比較奈米複合材料 rGO/CS、PPy/CS和rGO/PPy/CS超級電容的性能。 DBDjet 之處理可提高這三種奈米複合電極材料的親水性。本研究使用電化學測量包含電阻抗譜 (electrical impedance spectroscopy, EIS)、循環伏安法 (cyclic volt-ammetry, CV) 和恆電流充放電 (galvanostatic charging-discharging, GCD) 用於評估三種類型 SC 的性能。利用Trasatti方法用於評估電容的雙電層電容(electric-double layer capacitance, EDLC)和擬電容(pseudocapacitance, PC)的特性。並使用 Ragone 圖分析並比較了三種 SCs 的能量和功率密度。在本研究證實,在相同重量的奈米複合活性材料下,rGO 和 PPy 在 SCs 中的組合使用可以顯著增加電容並提高其運行穩定性。

並列摘要


Reduced graphene oxide (rGO) and/or polypyrrole (PPy) are mixed with chitosan (CS) binder materials for screen-printing flexible supercapacitors (SCs) on the carbon cloth with the pre-treatment of arc atmospheric-pressure plasma jet (APPJ). The resulting gel-electrolyte rGO/CS, PPy/CS, and rGO/PPy/CS SCs are then processed by dielectric barrier discharge plasma jet (DBDjet), used for improving the hydrophilicity of these three nanocomposite electrode materials. To compare and assess the SCs, electrochemical measurements including cyclic volt-ammetry (CV), electrical impedance spectroscopy (EIS) and galvanostatic charging-discharging (GCD) were used. In the analysis of three types of SCs, the Trasatti method is utilized to evaluate the electric-double layer capacitance (EDLC) and pseudocapacitance (PC) of each supercapacitor; Rogone plots is utilized to compare and illustrate their energy density and power density. Our experiments confirm that, with the same weight of active materials, the combined use of rGO and PPy in SCs can significantly increase the capacitance and improve the operation stability.

參考文獻


[1] C. Liu, C.-W. Hung, I. C. Cheng, C.-C. Hsu, I. C. Cheng, and J.-Z. Chen, "Dielectric Barrier Discharge Plasma Jet (DBDjet) Processed Reduced Graphene Oxide/Polypyrrole/Chitosan Nanocomposite Supercapacitors," Polymers, vol. 13, no. 20, 2021, doi: 10.3390/polym13203585.
[2] C.-H. Tseng, J.-C. Hsin, J.-H. Tsai, and J.-Z. Chen, "Dielectric-barrier-discharge jet treated flexible supercapacitors with carbon cloth current collectors of long-lasting hydrophilicity," Journal of the Electrochemical Society, vol. 167, no. 11, p. 116511, 2020.
[3] Y. Liu, I. Murtaza, A. Shuja, and H. Meng, "Interfacial modification for heightening the interaction between PEDOT and substrate towards enhanced flexible solid supercapacitor performance," Chemical Engineering Journal, vol. 379, p. 122326, 2020.
[4] B. Guan et al., "Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor," Chemical Engineering Journal, vol. 308, pp. 1165-1173, 2017.
[5] L. Liu, D. Ye, Y. Yu, L. Liu, and Y. Wu, "Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching," Carbon, vol. 111, pp. 121-127, 2017.

延伸閱讀