透過您的圖書館登入
IP:18.189.14.219
  • 學位論文

轉運蛋白與CYP450酵素在藥物交互作用上所扮演角色之探討: 第一部分: CYP2C19與CYP3A4在氫離子幫浦抑制劑與抗凝血藥物(clopidogrel與prasugrel)之藥物交互作用上所扮演角色之探討 第二部分: P-glycoprotein與CYP450酵素對於紅麴中lovastatin之生體可用率影響之探討 第三部分: 關節炎對於轉運蛋白與CYP450酵素之表現與對於leflunomide、simvastatin與rosuvastatin藥動性質影響之探討

Roles of transporters and CYP450 enzymes on drug interaction: Part I: CYP2C19 and CYP3A4-mediated drug-drug interaction between PPIs and anticoagulant agents (clopidogrel and prasugrel). Part II: Roles of P-glycoprotein and CYP450 enzymes on the bioavailability of lovastatin in red yeast rice. Part III: The Effect of arthritis on the expression of transporters and CYP450 enzymes and its implication to the pharmacokinetics of leflunomide, simvastatin, and rosuvastatin.

指導教授 : 林君榮

摘要


第一部分: CYP2C19與CYP3A4在氫離子幫浦抑制劑與抗凝血藥物 (clopidogrel與prasugrel) 之藥物交互作用上所扮演角色之探討 本研究是探討氫離子幫浦抑制劑與抗凝血藥物 (clopidogrel與prasugrel) 之間的藥物交互作用。首先先利用人類肝臟微粒體系統,測量各種氫離子幫浦抑制劑 (包含omeprazole、esomeprazole、lansoprazole、pantoprazole與rabeprazole) 抑制百分之五十clopidogrel生成2-oxo-clopidogrel,2-oxo-clopidogrel生成clopidogrel活性代謝物與prasugrel thiolactone生成prasugrel活性代謝物之濃度 (IC50)。接著進一步評估clopidogrel與prasugrel之抗凝血功能是否會受到氫離子幫浦抑制劑的影響。結果顯示,大多數的氫離子幫浦抑制劑 (除了pantoprazole以外) 都會抑制2-oxo-clopidogrel與clopidogrel活性代謝物的生成,其IC50的濃度分別為22-32 μM與6-16 μM之間。氫離子幫浦抑制劑也會抑制prasugrel活性代謝物的生成,而IC50的濃度則為9-25 μM之間。在所有氫離子幫浦抑制劑之中,omeprazole對於clopidogrel活性代謝物的生成具有最強的抑制效果。而omeprazole、esomeprazole與rabeprazole對於prasugrel活性代謝物的生成具有著較強的抑制效果,在血小板凝集方面,omeprazole與lansoprazole對於抑制clopidogrel的抗血小板凝集的功能具有較強的作用。另一方面,omeprazole、esomeprazole與rabeprazole則對於抑制prasugrel的抗血小板凝集的功能具有較強的作用。這些結果顯示,不同的氫離子幫浦抑制劑對於clopidogrel與prasugrel在肝臟代謝與抗血小板凝集的功能上具有著不同程度的抑制效果。   第二部分: P-glycoprotein與CYP450酵素對於紅麴中lovastatin之生體可用率影響之探討 紅麴 (red yeast rice; RYR) 主要用來降低血中膽固醇的活性成分為lovastatin。本研究針對紅麴產品 (包含LipoCol Forte、Cholestin與Xuezhikang) 與二種市售lovastatin錠劑 (Mevacor與Lovasta) 中lovastatin之臨床藥物動力學與可能發生之交互作用進行探討。體外試驗中發現,在不同的溶離液中,三種紅麴產品中lovastatin均比lovastatin錠劑具有著較快的溶離速率與較高的溶解度。同時在粉末X光繞射與熱差分析儀的結果顯示紅麴產品中lovastatin具有較低的結晶性。除此之外,三種紅麴產品的萃取物比起lovastatin的標準品對於肝臟代謝酵素 (CYP450 enzymes) 與P-glycoprotin的活性有更強的抑制效果。紅麴產品的萃取物抑制CYP1A2與CYP2C19的效果則與這些酵素的特異性抑制劑的抑制效果相當。在臨床試驗部分,在健康受試者服用紅麴產品或是紅麴粉末後所得到的lovastatin或是其代謝物lovastatin acid之血液與時間作圖之曲線下面積 (AUC) 與最高血液中濃度 (Cmax) 均比起這些受試者服用lovastatin錠劑或是lovastatin錠劑磨碎後所得到的粉末來的高。同時服用紅麴產品或是紅麴粉末後到達最高血液中濃度的時間 (Tmax) 也比起服用lovastatin錠劑或是lovastatin錠劑磨碎後所得到的粉末來得較快且同時具有較小的變異性。在健康受試者單劑量口服1至4顆紅麴膠囊後,lovastatin與lovastatin acid的藥物動力學特性會呈現線性,同時在多劑量服用紅麴膠囊後,lovastatin與lovastatin acid也不會明顯的蓄積於體內。在藥物交互作用方面,同時服用紅麴產品與nifedipine後,紅麴產品並不會改變nifedipine的藥物動力學性質。然而,同時服用gemifbrozil與紅麴產品後,gemfibrozil會顯著的增加lovastatin acid的血中濃度。綜合上述結果顯示,在紅麴產品中,lovastatin具有較低的結晶性、較快的溶離速率與較高的溶解度使得lovastatin口服後的生體可用率顯著的增加。此外,雖然紅麴產品在體外會抑制肝臟代謝酵素與P-gp的活性,可是在人體內並不會有明顯之抑制效果而產生交互作用。不過仍須注意併用gemfibrozil與紅麴產品會使得lovastatin acid的血中濃度明顯增加。 第三部分: 關節炎對於轉運蛋白與CYP450酵素之表現與對於leflunomide、simvastatin與rosuvastatin藥動性質影響之探討 本篇研究的目的在探討肝臟與小腸上CYP450酵素與轉運蛋白在第二型膠原蛋白誘發的關節炎 (CIA) 大鼠mRNA之表現,以及leflunomide、simvastatin與rosuvastatin在CIA大鼠身上藥物動力學之性質。結果顯示,和健康老鼠相比較,關節炎會降低小腸中的CYP450酵素 (Cyp3a1) 之mRNA表現量。另一方面,關節炎則會降低肝臟中的Cyp酵素 (Cyp1a2、Cyp2c6、Cyp2c7與Cyp3a1) 與轉運蛋白 (Oatp1a1、Oatp1b2、Oatp1a4與Mrp2),可是卻不影響Cyp2c12酵素與轉運蛋白 (Bcrp與Mdr1a) 的mRNA表現量。在藥物動力學實驗中發現,當關節炎大鼠分別服用leflunomide與simvastatin,所測得leflunomide與simvastatin/simvastatin acid的血中濃度與全身性的暴露量均顯著的高於健康老鼠。可是當關節炎大鼠服用rosuvastatin,所測得rosuvastatin的血中濃度則與健康老鼠無太大差異。另外,在關節炎大鼠服用leflunomide與simvastatin後,血漿中肝臟毒性指標 (天門冬胺酸轉胺酶 (AST)、丙胺酸轉胺酶 (ALT)) 或肌肉毒性指標(肌酸激酶 (CK)) 的濃度均顯著的高於健康老鼠。可是於關節炎大鼠服用rosuvastatin後,這些毒性指標的濃度則與健康老鼠無太大差異。根據這些發現,風溼性關節炎會造成代謝酵素與轉運蛋白的表現量改變,並進而影響leflunomide或是simvastatin之藥動性質及毒性反應。

並列摘要


Part I: CYP2C19 and CYP3A4-mediated drug-drug interaction between PPIs and anticoagulant agents (clopidogrel and prasugrel). The interaction between proton pump inhibitors (PPIs) and clopidogrel/prasugrel was investigated. The IC50 values of omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on the metabolic ratios of 2-oxo-clopidogrel/clopidogrel, active metabolite of clopidogrel/2-oxo-clopidogrel, and active metabolite of prasugrel/prasugrel thiolactone in human liver microsomes were determined. The antiplatelet aggregation activities of clopidogrel and prasugrel were measured with or without PPIs. As a result, most PPIs (except for pantoprazole) inhibited the formation of 2-oxo-clopidogrel with IC50 values of 22–32 μM and inhibited the formation of active metabolite of clopidogrel with IC50 values of 6–16 μM. PPIs inhibited the formation of active metabolite of prasugrel with IC50 values of 9–25 μM. Among the tested PPIs, omeprazole exhibited the highest inhibitory potency on the formation of active metabolite of clopidogrel. Omeprazole, esomeprazole, and rabeprazole exhibited higher inhibitory potencies on the formation of active metabolite of prasugrel. Omeprazole and lansoprazole show higher inhibitory effects on the activity of antiplatelet aggregation activity of clopidogrel. On the other hand, omeprazole, esomeprazole and rabeprazole significantly decreased the antiplatelet aggregation activity of prasugrel thiolactone. These data indicate that PPIs differ in their effects to inhibit the metabolism and antiplatelet aggregation activities of clopidogrel and prasugrel. Part II: Roles of P-glycoprotein and CYP450 enzymes on the bioavailability of lovastatin in red yeast rice. Red yeast rice (RYR) can reduce cholesterol through its active component, lovastatin. To investigate the pharmacokinetic properties of lovastatin in RYR products and potential RYR-drug interactions, three RYR products (LipoCol Forte, Cholestin, or Xuezhikang) and two lovastatin tablets (Mevacor or Lovasta) were included. The dissolution rate of lovastatin in various dissolution media in the RYR products was faster and higher than that of lovastatin in lovastatin tablets. Powder X-ray diffraction and differential scanning calorimetry patterns showed that the crystallinity of lovastatin was reduced in RYR products. Furthermore, extracts of three RYR products were more effective than pure lovastatin in inhibiting the activities of cytochrome P450 enzymes and P-glycoprotein. Among CYP450 enzymes, RYR showed the highest inhibition on CYP1A2 and CYP2C19, with comparable inhibitory potencies to the corresponding typical inhibitors. In human studies, the AUC and Cmax values for both lovastatin and its active metabolite, lovastatin acid, were significant higher in healthy volunteers receiving LipoCol Forte capsules or powder than in those receiving lovastatin tablets or powder. In addition, shorter and less variable Tmax values were observed in volunteers taking LipoCol Forte than in those taking lovastatin tablets. In volunteers taking the RYR product LipoCol Forte, the pharmacokinetic properties of lovastatin and lovastatin acid were linear in the dose range of 1 to 4 capsules taken as a single dose and no significant accumulation was observed after multiple dosing. For drug-drug interactions, concomitant use of one LipoCol Forte capsule with nifedipine did not change the pharmacokinetics of nifedipine. Yet, concomitant use of gemfibrozil with LipoCol Forte resulted in a significant increase in the plasma concentration of lovastatin acid. These findings suggest that the oral bioavailability of lovastatin is significantly improved in RYR products as a result of a higher dissolution rate and reduced crystallinity. In addition, the use of RYR products may not have effects on the pharmacokinetics of concomitant co-medications despite their effects to inhibit the activities of CYP450 enzymes and P-gp, whereas gemfibrozil affects the pharmacokinetics of lovastatin acid when used concomitantly with RYR products.   Part III: The Effect of arthritis on the expression of transporters and CYP450 enzymes and its implication to the pharmacokinetics of leflunomide, simvastatin, and rosuvastatin. The objective of the present study was to investigate the expressions of intestinal and hepatic CYP450 enzymes and transporters and the pharmacokinetic properties of leflunomide, simvastatin and rosuvastatin in collagen-induced arthritis (CIA) rats. Compared with control rats, the mRNA level of CYP450 enzyme (Cyp3a1) was significantly decrease in the intestine of CIA rats. On the other hands, the mRNA levels of CYP450 enzymes (Cyp1a2, Cyp2c6, Cyp2c7 and Cyp3a1) and transporters (Oatp1a1, Oatp1b2, Oatp1a4 and Mrp2) were reduced in the liver of CIA rats, wherase compared to control rats, the expressions of Cyp2c12, Bcrp and Mdr1a did not change in CIA rats. When leflunomide and simvastatin were given orally, the plasma levels and systemic expourses of leflunomide and simvastatin/simvastatin acid were significantly higher in CIA rats than in control rats. Yet, there was no difference in the plasma levels of rosuvastatin between CIA rats and control rats when rosuvastatin was given orally. The plasma levels of markers of hepatoxicities (aspartate aminotransferase; AST and alanine aminotransferase; ALT) and/or myotoxicity (creatine kinase; CK) were significantly higher in CIA rats than in control rats after leflunomide and simvastatin was given. CIA rats change the expression of CYP450 enzymes and transporters, leading to the change in the pharmacokinetics and toxicities of leflunomide or simvastatin.

參考文獻


1. ICH E5. Ethnic factors in the acceptability of foreign clinical data. 5 February 1998 Internet: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E5_R1/Step4/E5_R1 Guideline.pdf .
2. Kristensen, M. B. Drug interactions and clinical pharmacokinetics. Clin. Pharmacokinet. 1976, 1, 351-372.
3. Morgan, E. T. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin. Pharmacol. Ther. 2009, 85, 434-438.
4. U.S. Food and Drug Administration. Drug interaction studies -study design, data analysis, and implications for dosing and labeling. Septemper 2006. Internet: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664.htm#4.
5. U.S. Food and Drug Administration. Guidance for industry on drug interaction studies- study design, data analysis, implications for dosing, and labeling recommendations. February 2012. Internet: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf.

延伸閱讀