透過您的圖書館登入
IP:3.142.90.235
  • 學位論文

微波24-GHz主動式隔離器及主動式半循環器之研製

Design and Analysis of Microwave 24-GHz Active Isolator and Active Quasi-circulator

指導教授 : 王暉

摘要


本論文主要研究的題目為主動式的隔離器和半循環器。 本論文提出了一種新的方法,在不使用磁性材料的前提下,使用共源極放大器和方向耦合器去實現隔離器,並完整的呈現此一方法的理論和設計流程。除了頻寬之外,使用此方法設計的隔離器和使用磁鐵實現的隔離器的性能相當。因為方向耦合器的被動特性,插入損耗的輸出功率1dB壓抑點相當高。反向隔離度則會隨著輸入功率增加而減少。本論文中使用台積電製程實現了一個24-GHz毫微米波隔離器,並使用此隔離器衍生設計了一個半循環器。比起已發表的主動式隔離器和半循環器,此主動式隔離器和半循環器展示了更好的插入損耗和插入損耗的輸出功率1dB壓抑點。 同時本論文中亦展示了一個不同運作機制的隔離器,此隔離器改善了前一個隔離器的頻寬和反向隔離度的線性度,但插入損耗和插入損耗的輸出功率1dB壓抑點較差。在功耗只有6毫瓦的情況下,插入損耗的輸出功率1dB壓抑點有4.5 dBm,優於相近功耗的一般放大器。

並列摘要


In this thesis presents the research of isolators and quasi-circulators. A new topology using the nonreciprocal common-source amplifier and the directional coupler is proposed to realize an isolator without ferrite. The theory and the design procedures are presented. The performance of this isolator is comparable to those of the ferrite isolators except for the bandwidth. The OP1dB of the insertion loss is high due to the passive nature of the directional coupler, but the reverse isolation deteriorates with the increasing input power. The proposed 24-GHz MMIC isolator is developed in TSMC 180-nm CMOS. Based on the proposed isolators, a quasi-circulator is designed and fabricated. Both of isolator and quasi-circulator have better OP1dB of the insertion loss than reported active isolators and quasi-circulators. Besides, a 24-GHz active isolator with another canceling mechanism is presented. This design improves the frequency bandwidth, and the linearity of the reverse isolation of the previous isolator. But the insertion loss and the OP1dB of the insertion loss are worse than the previous isolator. Although the OP1dB of the insertion loss is only 4.5 dBm, the OP1dB of the insertion loss is relatively good under 6-mW dc power consumption compared with the regular amplifier.

並列關鍵字

CMOS directional coupler ferrite isolator quasi-circulator

參考文獻


[1] L.-P. Carignan, A. Yelon, D. Menard, and C. Caloz, et al., “Ferromagnetic nanowire metamaterials: Theory and applications,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2568–2586, Oct. 2011.
[2] J. Adam, L. Davis, G. Dionne, E. Schloemann, and S. Stizer, “Ferrite devices and materials,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 3, pp. 721–737, Mar. 2002.
[3] B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett., vol. 94, no. 20, 2009, Art. ID 202505.
[4] W. Marynowski and J. Mazur, “Study of nonreciprocal devices using three-strip ferrite coupled line,” Progress In Electromagnetics Research, Vol. 118, 487-504, 2011.
[5] V. G. Harris, “Modern microwave ferrites,” IEEE Trans. Magn., vol. 48, no. 3, pp. 1075–1104, Mar. 2012.

延伸閱讀