透過您的圖書館登入
IP:18.216.32.116
  • 學位論文

使用氣泡推進法建構奈米引擎模型

Catalytic Nanomotors Model by Bubble Propulsion

指導教授 : 趙聖德

摘要


近年來,由活細胞的生物引擎取得靈感,科學家開始研究如何透過化學反應為奈米、微米尺寸大小的引擎提供推進動力,由於其具有微小性,以及能自發性推動的性質,在很多領域都有潛在的運用。使得奈米引擎的理論研究及製程日漸受到重視。 本研究建立以氣泡推進法為推進機制的引擎模型,其根據過氧化氫的催化反應,氣泡脫離反應面所產生的動量變化,來解釋微米引擎的推動力學。我們考慮了整個系統的動量變化,求解出引擎的終端速度,及達到終端速度的時間,並結合了氣泡生成模組,以及蘭米爾方程式,使得數學模型與實驗可以更一致性。同時我們也建立了兩個數值模擬:引擎運動模擬、氣泡生成模擬,由模擬中驗證了數學模型上參數使用的合理性。 我們建立的引擎模型可以預測其引擎速度與氣泡的半徑平方成正比,與引擎的幾何尺寸和環境溶液濃度也有影響。並將模型預測結果與實驗結果做比較,有非常好的吻合。

並列摘要


In recent years, inspired by natural nanomotors, scientists have begun to study how to use the chemical reaction to provide propulsion power on the artificial nanomotors. Due to its minute and self-propelled properties. It has a lot of potential applications in many fields. The thesis presents a bubble propulsion model, which is based on catalyzed hydrogen peroxide decomposition reaction and momentum change when bubbles detach from the reaction surface to explain the micromotor propulsion mechanism. We consider the total system momentum change and solve the micromotor terminal velocity, reached terminal velocity time. It combines the bubble growth model and Langmuir equation, which make our model more consistent with experimental conditions. We have also established two numerical simulations:Jet Engines model and Bubble growth model. The simulation results verify the parameters used in the mathematical model. The mathematical model can predict the velocity of micromotor which is directly proportional to the square of bubble radius. The geometric dimensions of the micromotor, like length and radius, also influence its dynamic behavior. The model predictions are supported by the experiment data of the roll-up micromotor .

參考文獻


[1] Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, 'Rolled-up Nanotech on Polymers: From Basic Perception to Self-Propelled Catalytic Microengines', Chem Soc Rev, 40 (2011), 2109-19.
[2] Schliwa M, Woehlke G. Molecular motors. Nature, (2003), 759–765
[3] E. Gajewski, D.K. Steckler, and R.N. Goldberg, 'Thermodynamics of the Hydrolysis of Adenosine 5'-Triphosphate to Adenosine 5'-Diphosphate', Journal of Biological Chemistry, 261 (1986), 12733-37.
[4] Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th ed. New York: Garland Science, (2002)
[5] W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, 'Catalytic Nanomotors: Autonomous Movement of Striped Nanorods', Journal of the American Chemical Society, 126 (2004), 13424-31.

延伸閱讀