透過您的圖書館登入
IP:3.141.8.247
  • 學位論文

聚三-己基噻吩-磺酸化聚異戊二烯嵌段雙性共聚高分子:合成與自組裝之研究

Poly(3-hexylthiophene) and Sulfonated polyisoprene Amphiphilic Block Copolymer : Synthesis and Self-assembly

指導教授 : 趙基揚

摘要


本研究的主要目標是合成的共軛-雙性嵌段共聚高分子並探討其在溶液、及薄膜中的結晶和自組裝行為。其中的疏水共軛高分子鍊段為最被廣泛應用於軟性電子元件的 Poly(3-hexylthiophene) (P3HT),而親水聚電解質鍊段則為具有側鍊離子基修飾的1,2/3,4-Polyisoprene。中間物P3HT-b-PIOH在我們實驗室之前的研究已近成熟,透過GRIM聚合法以陰離子聚合法,共聚物的polydiversuty(PDI)可以被控制在1.2以下,為我們後續的精準性修飾定下基礎。藉由磺酸鋰化我們可以將P3HT-b-PIOH 轉換為雙性共聚高分子P3HT-b-sPILi,為了使親水鏈段的水溶性提升,我們後續將共聚物質子化使親水鏈段為吸水性極強的磺酸根。此獨特的分子結構(P3HT-b-sPIH)可使共聚物的水溶性大幅提升並均勻分散在水溶液中,進而開發出較環保的水溶液薄膜製備製程。P3HT在水中的自組裝行為亦會受到水溶性鏈段之影響,使P3HT在水中就先行結晶,有助於薄膜製成的自組裝微進行結晶度高且長程有序的排列。 在此計畫中我們將進行的工作包括 (1)設計特定分子量組成的雙嵌段共聚高分子並鑑定,(2)探討共聚高分子在溶液中及薄膜的自組裝行為,並量測其光學吸收特性及結晶性 (3) 透過前述方法,合理推論出親水鏈段之設計能使共聚物達到水溶的機制

並列摘要


In this thesis, we reported the preparation, the microstructures, solvent and optical properties of newly design Poly(3-hexylthiophene-block-sulfonated isoprene) rod-coil block copolymer electrolytes) (P3HT-b-PIOSO3H/Li). P3HT-b-PIOH have been completely researched in our former laboratory literature. P3HT block copolymers have drawn significant interests in organic electronic applications due to the ability to form order nanostructures through self-assembly which is governed by the rod-rod interaction, rod-coil interaction and also P3HT crystallization. Well-defined rod-coil P3HT-b-PIOH diblock copolymers were synthesized via GRIM polymerization, anionic polymerization and hydroboration which exhibited an average molecular weight of around 8000 g/mol with low polydispersities below 1.2. The P3HT-b-PIOH diblock copolymers were easily converted to amphiphilic diblock copolymer electrolytes by end group sulfonated modification to yield anionic amphiphilic diblock copolymers electrolytes. In order to improve P3HT BCP water solubility, we also substitute the Li ion into proton by directly ion exchange in H2SO4 solution. The structure and properties of the resulting diblock copolymers and ionic structures were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography(GPC), Fourier transform infrared(FTIR), UV–vis spectroscopy, and differential scanning calorimetry(DSC). The morphology of the polymers can be observed by WAXS, atomic force microscopy(AFM) and transmission electron microscopy(TEM).

參考文獻


[7.] Nguyen, T. A.; Nguyen, T. T.; Nguyen, L.-T. T.; Van Le, T.; Nguyen, H. T., Synthetic Met, 2016, 217, 172-184.
[8.] Su, M.; Shi, S. Y.; Wang, Q.; Liu, N.; Yin, J.; Liu, C. H.; Ding, Y. S.; Wu, Z. Q., Polym Chem-Uk, 2015, 6 (36), 6519-6528.
[13.] Lohwasser, R. H.; Thelakkat, M., Macromolecules, 2011, 44 (9), 3388-3397.
[17.] Craley, C. R.; Zhang, R.; Kowalewski, T.; McCullough, R. D.; Stefan, M. C., Macromol Rapid Comm, 2009, 30 (1), 11-16.
[20.] Letchford, K.; Burt, H., Eur J Pharm Biopharm, 2007, 65 (3), 259-269.

延伸閱讀