透過您的圖書館登入
IP:18.188.39.197
  • 學位論文

高分子簡式同調耦合大角度光功率分離器之研製

Fabrication of Wide-Angle Optical Power Splitter Using Benzocyclebutene Waveguide with Simplified Coherently-Coupled Segments

指導教授 : 王維新

摘要


本研究以波長248 nm的KrF準分子雷射,透過石英光罩直接將紫外光雷射照射在高分子材料benzocyclobutene上改變折射率製作光波導元件,製作出1.55 μm光源之下的簡式同調耦合的彎曲結構、一分二光功率分離器(Y形分岔)、以及一分四光功率分離器,使用的彎曲角度依序為0.5°、1.5°、2.5°、3°、2.5°、1.5°、1°。模擬結果顯示,與傳統彎曲方式比較,簡式同調耦合彎曲除了可以縮短元件的長度外,也有較高的傳輸效率。實作時採固定雷射強度及重複率,並選用不同的紫外光雷射發數。首先利用S形結構量測光功率值以求不同雷射發數下的同調耦合長度,再用一分二光功率分離器求其分岔長度,最後再將製程條件應用在一分四光功率分離器的設計上。實驗所得到的總傳輸率可達81.86%,輸出不均勻率為0.81 dB。而模擬的總傳輸率為85.6%,輸出不均勻率為0.57dB,此與實驗所得到的數據相當的吻合。

並列摘要


Benzocyclobutene (BCB) optical waveguide devices fabricated by 248 nm krypton fluorine excimer laser illumination are demonstrated. The optical devices of interest are S-bend, 1×2 optical power splitter (Y-branch), and 1×4 optical power splitter with simplified coherently-coupled (SCC) segments. The bend angles of these segments are designed as 0.5°, 1.5°, 2.5°, 3°, 2.5°, 1.5°, and 0.5° for the 1.55 μm wavelength. Simulated results show that with use of SCC structure, the device length is shortened and the transmission efficiency is enhanced as compared with those of the traditional bending structures. Using various numbers of laser shots, the coherent length is determined by the S-bend structure, and the split length is determined by the 1×2 optical power splitter. Based on the coherent length and the split length, a 1×4 optical power splitter is fabricated. The measured transmission efficiency is 81.86%, and the maximum imbalance is 0.81 dB, which agree quite well with the simulation results 85.6%, and 0.57 dB respectively.

參考文獻


[1] H. C. Song, T. W. Oh, S. Y. Shin, S. Y. Yi, W. H. Jang, and T. H. Rhee, “Four-branch single-mode waveguide power divider, ” IEEE Photonics Tech. Lett., vol. 10, no. 12, December 1998.
[2] M. H. Hu, J. Z. Huang, R. Scarmozzino, M. Levy, and R. M. Osgood, Jr., “A low-loss and compact waveguide Y-branch using refractive-index tapering, ” IEEE Photonics Tech. Lett., vol. 9, no. 2, February 1997.
[3] T. J. Wang and W. S. Wang, “Wide-angle Ni-diffused LiNbO3 abrupt waveguide bend with a proton exchanged microprism, ” IEEE J. Quantum Electron., vol.6, pp.94-100, 2000.
[4] R. C. Lu, Y. P. Liao, H. B. Lin, and W. S. Wang, “Design and fabrication of wide-angle abrupt bends on lithium niobate,” IEEE J. Quantum Electron., vol.2, pp.215-220, 1996.
[5] K. T. Koai and P. L. Liu, “Modeling of Ti:LiNbO3 waveguide devices: PartⅡ- S-shaped channel waveguide bends,”J. Lightwave Tech., vol.7, pp.1016-1021, 1989.

被引用紀錄


潘韋志(2009)。紫外光雷射照射高分子光波導元件熱光效應之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.02676
張宇萱(2008)。紫外光雷射照射高分子多模干涉元件之研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.00453
吳正一(2006)。質子交換與退火式質子交換鈮酸鋰藍光波導元件之研製〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2006.02273

延伸閱讀