透過您的圖書館登入
IP:3.144.98.13
  • 學位論文

浮游式黑潮渦輪發電機重量估計及浮力穩度計算

Weight Estimation and Static Stability Calculation for a Floating Kuroshio Turbine

指導教授 : 邱逢琛

摘要


本研究的目的在求掌握20kW級浮游式黑潮發電渦輪機(Floating Kuroshio Turbine; FKT)的重量、重心、浮力與浮心及其佈放時浸沒過程的轉變穩度(transition stability),以確保完成初步設計的FKT具備足夠的穩度。為了細估FKT機組重量、重心,本研究進行了部份包含浮力引擎模組在內的組件設計,及彙整了FKT研發團隊針對其它組件已完成的設計成果,並應用所撰寫的MATLAB程式進行機組整體重量、重心及質量慣性矩的計算。此外,亦完成了可計算機組浮力、浮心及搭配浮力引擎操作的轉變穩度計算程式的擴充,並用以計算20kW FKT機組分別於初始艏仰及初始艏俯等二種狀況下,從水面浸沒至水下的轉變穩度變化。 本研究的計算結果顯示20kW FKT機組的縱向穩度較橫向穩度低,佈放過程中需多留意縱向穩度與浮力引擎進水量的關係;而機組於初始艏仰狀況時的轉變穩度會低於初始艏俯狀況,因此機組的組件配置需考慮重心與浮心的縱向位置,避免造成過大的初始艏仰角度,而降低轉變穩度。計算結果亦顯示前述兩種初始狀況下,機組縱向及橫向定傾高全程皆不小於0.70公尺,其值皆遠高於IMO對船舶初始穩度GM值不得小於0.15公尺之規定,顯示經過重量重心細估的20kW FKT機組具備了足夠的穩度。

並列摘要


The purpose of the present study is to clarify the weight, center of gravity (CG), buoyancy and center of buoyancy (CB) of a 20kW rated Floating Kuroshio Turbine (FKT), as well as its metacentric height variation in the submerging process during deployment operation, so its transition stability can be confirmed. In order to estimate the weight and CG of the FKT in more detail, some of modules and elements including buoyancy engine are designed in the present study. Besides, accomplished designs of other modules or elements conducted by the FKT R&D group are also aggregated. A program basing on MATLAB software is developed to calculate the weight, CG and moment of inertia of the FKT as a whole unit. An existing program for calculating the buoyancy and CB of the FKT is also extended to be able to calculate the transition stability corresponding to the operation of buoyancy engine. The extended program is applied to calculate the metacentric height variation of the 20 kW FKT in the submerging process from two different initial floating conditions, one is trim by stern and the other one is trim by bow. Calculation results show that the longitudinal stability is lower than transverse stability, and more attention needs to be payed to longitudinal stability in operating buoyancy engine during deployment. Transition stability of the floating condition with initial trim by stern is lower than that of the floating condition with initial trim by bow. Therefore, the longitudinal positions of CG and CB need also to be considered for avoiding too significant initial angle of trim by stern. However, longitudinal metacentric height and transverse metacentric height of both these two initial floating conditions are not lower than 0.70 meter in the submerging process, and this value is higher than the IMO criteria of 0.15 meter for ships. It can be confirmed that the 20kW FKT with detailed weight estimation has sufficient transition stability for deployment operation.

參考文獻


[11] 林筱瑜,”浮游式黑潮渦輪發電機佈放與回收模擬之研究”,國立台灣大學工程科學及海洋工程學系碩士論文. 2015
[27] 施旻玫,”千瓦級浮游式黑潮發電渦輪機參數化設計及水動力性能之分析”, 國立台灣大學工程科學及海洋工程學系碩士論文. 2015
[4] Chen, F., “The Kuroshio Power Plant”, Lecture Notes in Energy. Cham: Springer, 2013.
[cited 2016; Available from: http://www.gulfstreamturbine.com/.]
[8] “Mega W級洋流發電系統實用化之可行性研究報告書 ”, 日本財團法人機械系統振興協會,2010

被引用紀錄


曾怡瑄(2017)。浮游式黑潮發電渦輪機之流體動力性能實驗研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201703582
謝君彥(2017)。浮游式黑潮渦輪發電機在波浪作用下的流體動力分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201703330
賴忠緯(2017)。浮游式黑潮渦輪發電機轉子葉片性能及機組運動之模擬研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201703301
林師豪(2017)。浮游式黑潮渦輪發電機於垂向剪切流場下之流體動力分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201700578

延伸閱讀