透過您的圖書館登入
IP:3.129.67.26
  • 學位論文

寬頻縮小化電磁能隙結構之設計

Design of Miniaturized and Wide-Banded Electromagnetic Bandgap Structures

指導教授 : 邱奕鵬

摘要


在高速數位電路中,利用電磁能隙結構抑制同時切換制雜訊以及維持電源完整性是很常見的方法,而本文為了增加電磁能隙結構的頻寬以及降低低頻截止頻率達成更好的縮小化效果,提出了多內嵌金屬板和網狀接地層結構。從等效電路模型來說,利用多內嵌金屬板提升電源層與金屬板間的等效電容以降低低頻截止頻率;再用網狀接地層減少電源層與接地層間的等效電容提升高頻截止頻率。本文也以模擬軟體HFSS驗證此結構的可行性,此結構的Fractional Bandwidth來到了1.716,縮小化參數則是提升到1.62%,比起傳統電磁能隙結構都有42%的顯著提升。 接著我們把光子晶體的缺陷概念應用到電磁能隙結構,因為使用電磁能隙結構可以只利用更小體積就設計出缺陷結構,本文提出電磁能隙結構共振腔以及電磁能隙結構波導。在共振腔中我們可以把能量集中在缺陷處;而在波導中,不論路徑為直線型或彎曲型都有一樣的帶通頻率。為了降低電磁能隙結構波導的帶通頻率,我們加入多內嵌金屬板結構,一樣以模擬軟體驗證此結構的可行性。而且與文獻相比,整體的縮小化效果更好。

並列摘要


It is common to suppress simultaneous switching noise(SSN) and maintain power integrity by using electromagnetic bandgap(EBG) structures. In this thesis, we provide two design concepts in order to establish wide-banded and miniaturized EBG structures. According to the equivalent circuit model, we can increase the equivalent capacitance between power plane and patch by adding additional patches in traditional EBG structure to decrease the lower cut-off frequency. Also, we use mesh-ground structure to decrease the equivalent capacitance between power plane and ground plane to increase the upper cut-off frequency. Then we verify this structures by simulation software HFSS and it does match the performance we predict before. Moreover, we use defect structures in photonic crystal to design the EBG cavity and EBG waveguide structures which cost less volume. We can confine energy in the cavity structures, and both straight and bended type waveguide structures exist the same pass band in band gap region. We use multi-patches in waveguide structures to decrease pass band frequency and verify it by simulation software also.

參考文獻


[3] 游逸民, “利用多連通柱接地平面擾動晶格抑制同步切換雜訊之研究,“ 國立台灣大學碩士論文, Jun. 2010.
[25] 王春得, “寬頻縮小化電磁能隙結構於電源完整性設計之應用,“ 國立台灣大學博士論文, Mar. 2013.
[2] R. Senthinathan and J. L. Prince, “Simultaneous switching ground noise calculation for packaged CMOS devices,“ IEEE J. Solid-State Circuits, vol. 26, no. 11, pp. 1724-1728, Nov. 1991.
[4] C.-K. Shen, S. Chen, and T.-L. Wu, “Compact Cascaded-Spiral-Patch EBG Structure for Broadband SSN Mitigation in WLAN Applications, “ IEEE Trans. Microw. Theory Tech., vol. 64, no. 9, pp. 2740-2748, Sep. 2016.
[5] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light. Princeton university press, 2011.

延伸閱讀