本論文的主要目的是在發展一套系統化且有效率的拓樸合成方法,可以列舉出雙輸入混合變速機構。研究主體分為兩個部分,第一部分是針對可分離變速機構的特徵推導及拓樸構造合成;第二部分是針對不可分離變速機構的特徵推導及拓樸構造合成。首先,針對於混合變速機構的研究可推衍出各項特徵,包括在雙自由度變速機構中必須要有兩個輸入桿、一個地桿及一個輸出桿,這些桿件都必須是同軸桿件;對於變速機構使用離合器將兩桿件結合為同一桿提出只有地桿及輸入桿才可對同軸桿件做結合,而輸出桿件必須維持在同一桿。從變速機構特性中推衍出可分離變速機構及不可分離變速機構的特性,對於可分離變速機構提出藉由切割桿件分解成兩個齒輪運動鏈分別為接地單元(Ground Component, GC)及輸出單元(Output Component, OC)。藉由齒輪運動鏈上應具有的同軸桿件(Coaxial Link)及末端點(End Vertex)數量找出單自由度齒輪運動鏈(1-DOF Geared Kinematic Chains, 1-DOF GKCs)可被當作接地單元(GC)及輸出單元(OC)的條件。並從同軸桿件(Coaxial Link)結合找出單自由度的變異機構(Morphed Mechanism),辨認同構性機構(Isomorphic Mechanism)以便於找出不同的變異機構(Morphed Mechanism)數量。再發展出一套系統化方法指定理想的變異機構數量(Morphed Mechanism)合成出雙自由度可分離變速機構(2-DOF Fractionated Hybrid Transmission)。對於雙自由度不可分離齒輪運動鏈使用在混合變速機構提出必須選擇一同軸桿件(Coaxial Link)為地桿。雙自由度不可分離變速機構藉由分解後的運動單元(Kinematic Unit, KU)找出同軸桿件(Coaxial Link)結合特性,並提出經過同軸桿件(Coaxial Link)結合的變異機構(Morphed Mechanism)必須不具有贅餘桿件(Redundant Link)。然而過去桿件數至七桿的雙自由度圖集找不到合適於混合變速機構的齒輪運動鏈,進而對可使用於變速機構的齒輪運動鏈作合成。在合成後的齒輪運動鏈發現透過桿件結合後機構有相同粗邊路徑(Heavy-edged Path),排除同構性機構找出不同的變異機構(Morphed Mechanism)數量。再利用有效率的方法指定理想的變異機構數量(Morphed Mechanism)合成出雙自由度可分離變速機構。
This paper aim at developing a systematic and efficient method for topological synthesis of hybrid transmission mechanisms. The characteristics of hybrid transmission could be derived from the research including that two-DOF transmission must have two inputs, one ground and one output and these links should be coaxial. For the connection of two links, only input and ground links can be connected by the coaxial links. The features of fractionated and non-fractionated transmission are derived by the general characteristics of transmissions. For the fractionated transmission, it could be decomposed into two ground component (GC) and output component (OC). The rules that a GKC is GC and OC could be found out according to the restrictions of number of coaxial links and end vertices. By the connecting of coaxial link, the one-DOF morph mechanism could be derived and different number of morph mechanism can be identified by checking the isomorphic mechanism. For two-DOF non-fractionated transmission, the ground should be coaxial link. The features of coaxial links connecting would be found out and the morph mechanism which derived from the connecting of coaxial links should avoid the redundant links. However, there are no admissible GKCs inside the atlas of two-DOF GKC up to seven links. Hence, the admissible mechanisms are enumerated. For identifying the distinct morphed mechanism, the heavy-edged pathes are identical that will be regarded as one. The methodology presented is systematic, and can be easily applied to the enumertation of fractionated and non-fractionated transmission with distinct morphed mechanisms.