透過您的圖書館登入
IP:3.147.66.178
  • 學位論文

螢光碳奈米複合材料之生物應用

Bioapplications of Photoluminescent Carbon Nanocomposites

指導教授 : 張煥宗

摘要


本研究以水熱法將碳奈米點修飾於還原態石墨烯氧化物(C-dots@RGO),過程中兒茶素可同時作為碳奈米點的碳源及石墨烯氧化物的還原劑,以合成後的C-dots@RGO開發靈敏的過氧化氫及葡萄糖感測器。C-dots@RGO具有光致螢光的特性,且放光波段隨激發波長改變,在365 nm及440 nm處具有最大激發及放光波長。C-dots@RGO螢光強度不受高濃度(350 mM)鹽類影響,但其螢光強度會受活性氧分子(reactive oxygen species,ROS)的影響而減弱。當系統中有過氧化氫存在時,活性氧分子會與其反應,使活性氧分子含量減少,造成C-dots@RGO的螢光強度恢復,藉此以偵測過氧化氫。若於感測系統中加入葡萄糖氧化酶,因葡萄糖會與酶反應生成過氧化氫,故此系統亦可應用於葡萄糖之檢測。若於系統中添加10 μM的牛血清白蛋白,則可有效降低此葡萄糖感測器之偵測極限(limit of detection,LOD)至140 nM,線性範圍為1 μM到60 μM。本研究進一步將此感測器應用於血清及唾液樣品中葡萄糖濃度的偵測,結果分別為 5.1 ± 0.6 mM及 117.9 ± 8.1 μM,與市售的電化學式血糖分析儀及文獻相近,顯示本感測器不僅可應用於真實樣品,且兼具操作簡便、成本低及高靈敏度等優點。此外,待測分子與相對應之酶產生過氧化氫而使C-dots@RGO螢光增強的特性,亦可被應用於其他生物分子之偵測。

並列摘要


We have demonstrated sensitive detections of hydrogen peroxide (H2O2) and glucose using reduced graphene oxide decorated with carbon dots (C-dots@RGO). The C-dots@RGO prepared from catechin (reducing agent and carbon source) and graphene oxide via hydrothermal routes possesses excitation-wavelength-dependence photoluminescence (PL) characteristics, with maximum excitation and emission wavelengths of 365 and 440 nm, respectively. The C-dots@RGO is stable in solution containing NaCl up to 350 mM, but is quenched by reactive oxygen species (ROS). ROS reacts with H2O2 and thus its PL quenching toward the C-dots@RGO is minimized. When using C-dots@RGO and glucose oxidase (GOx), the PL assay allows detection of glucose in the presence of 10 μM of bovine serum albumin, with linearity over a concentration range from 1 to 60 μM (r = 0.99) and a limit of detection (at a signal-to-noise ratio of 3) of 140 nM. The practicality of this assay has been validated by determining the concentrations of glucose in serum and saliva samples, with results of 5.1 ± 0.6 mM (n = 3) and 117.9 ± 8.1 μM (n = 3), respectively. Our simple and sensitive assay opens a new avenue of developing assays for various analytes using C-dots@RGO in conjunction with different enzymes.

參考文獻


1. Buffat, P.; Borel, J. P., Phys. Rev. A, 1976, 13, 2287–2298.
3. Takagahara, T.; Takeda, K., Phys. Rev. B, 1992, 46, 15578–15581.
20. Liu, H.; Ye, T.; Mao, C., Angew. Chem. Int. Ed., 2007, 46, 6473–6475.
21. Baker, S. N.; Baker, G. A., Angew. Chem. Int. Ed., 2010, 49, 6726–6744.
22. Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-K.; Wei, P.-K.; Tsao, P.-H.; Chang, H.-C.; Fann, W., Proc. Natl. Acad. Sci., 2007, 104, 727–732.

延伸閱讀