透過您的圖書館登入
IP:18.224.39.32
  • 學位論文

台灣芭蕉適應環境的遺傳結構之探究

The genetic architecture of environmental adaptation for the past, present, and future of Musa itinerans

指導教授 : 李承叡
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


遺傳結構與其對應的效應值向來是演化生物學的研究核心。冰河時期和亞洲大陸間斷相連的台灣恰為絕佳地點進行該類研究,因其不僅具有大陸族群的既有變異,更有因應新環境被保留的新生突變。此研究著眼於野生種香蕉──台灣芭蕉,並利用生態基因體學的方法檢視其過去至未來的適應進程。遺傳組成與環境因子的顯著相關顯示台灣芭蕉存在在地適應現象,且新生突變與既有變異此二者遺傳結構貢獻不一。數量上,既有變異普遍較新生突變為多;而對於雨量相關的氣候因子,效應值則以新生突變為大,且當該因子相對於中國大陸地區為一嶄新的氣候時,此現象尤為明顯。我們亦著眼於台灣芭蕉未來的適應現象,雖未發現氣候變遷傾向保留任一遺傳結構,但透過物種分布模型與效應值的結合,揭露了適存族群潛在的滅絕風險。此研究不僅演示了遺傳結構──既有變異與新生突變──的適應軌跡,且透過不同模型的整合,指出台灣西南部為台灣芭蕉的易危區域。

並列摘要


Genetic architecture of adaptation has been the central focus to evolutionary biology, and effect sizes thereof have been investigated from theory to empirical studies. Taiwan is a perfect place to explore such synthesis of the genetic basis and effect size where standing variations (SV) and new mutations (NM) were established through the recurring connection to East Asian continent at glacial periods. Here, we center on a wild banana Musa itinerans that distributes along altitudinal and latitudinal gradients in Taiwan, and assess the adaptive course from the past to the future. Significant genetics-environment association indicates local adaptation where the assortment of SV and NM contributes differently. While SV are dominant in number, NM exert larger effect size in precipitation-related climates, especially for those novel to mainland China. Under anthropogenic climate change, both SV and NM have no inclination to retain in the future. Incorporation of effect size into species distribution modeling unveils the indiscernible extinction risk of apparently fitting populations. Our results demonstrate the trajectories of adaptive SV and NM, and identify southwestern Taiwan as the most vulnerable region with the integration of universal and locally differential responses of M. itinerans.

參考文獻


1. Smith JM & Haigh J (1974) The hitch-hiking effect of a favourable gene. Genetical research 23(1):23-35.
2. Barton N (1998) Evolutionary biology - The geometry of adaptation. Nature 395(6704):751-752.
3. Barrett RD & Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23(1):38-44.
4. Barton NH (2000) Genetic hitchhiking. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 355(1403):1553-1562.
5. Linnen CR, Kingsley EP, Jensen JD, & Hoekstra HE (2009) On the origin and spread of an adaptive allele in deer mice. Science 325(5944):1095-1098.

延伸閱讀