透過您的圖書館登入
IP:18.224.37.89
  • 學位論文

自驅動暨自癒合之可穿戴式紫外光感測器

Self-powered and Self-healed Wearable UV Photodetectors

指導教授 : 陳永芳

摘要


「自癒合」元件是一種能在受到外力破壞後,能自行恢復其初始功能的元件,故其可運用範圍之廣泛,引起了科學界的高度興趣。然而,迄今為止大部分的研究主要集中於初步之自癒合聚合物的凝膠化,而較少更進一步地著墨於自癒合電子元件之設計。本研究中,我們首先整合奈米銀線 (Ag NW)、半導體奈米粒子和洋菜醣/聚乙烯醇(agarose/PVA)水凝膠來製造自驅動與自癒合紫外光感測器。本元件的自驅動能力歸因於紫外光照射產生的光致載子受「聚二氧乙基噻吩:聚苯乙烯磺酸」(PEDOT:PSS)/氧化鋅奈米粒子(ZnO NP)界面處產生之內建電場驅動分離而產生光電流。在325奈米波段的紫外光照射下,元件的光響應度隨著較低的照度而增加至19 mA W^(-1),同時探測率可高達 8×〖10〗^11 Jones;而在元件破裂—癒合測試循環多次後,光電流仍能保有約 90±10 % 的效率恢復。這個首次演示可應用在電子肌膚上的自驅動與自癒合紫外光感測器,替可穿戴及可拉伸電子元件開闢了具前瞻性的各種領域應用。

並列摘要


Self-healed devices, which are able to restore their initial functionalities after deterioration, have a broad range of applications, attract considerable interest. However, the majority of research to date is still mainly focused on the exploration of new gelation of self-healed polymers instead of the design of new self-healed electronic devices. Here we present the first attempt of a self-powered and self-healed ultraviolet (UV) photodetector based on the integration of silver nanowires (Ag NWs) electrodes, semiconductor nanoparticles, and agarose/poly(vinyl alcohol) (PVA) double network (DN) hydrogels. Self-powered capacity is attributed to the separation of photo-induced carriers within the built-in electric field at the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/zinc oxide (ZnO) nanoparticles interface upon UV illumination. The responsivity was shown to increase with lower illumination intensity up to 19 mA W^(-1) with a specific detectivity 8×〖10〗^11 Jones under 325 nm UV illumination intensity of 2.74 μW. On rupture, the initial photocurrent can be repeatedly restored with ∼ 90±10 % efficiency after several times of healing cycles. The first demonstrated self-powered and self-healed UV photodetector has a great promising for the development of smart electronic skins.

並列關鍵字

photodetector self-powered self-healed agarose PVA hydrogels

參考文獻


[1.] Hammock, M. L.; Chortos, A.; Tee, B. C.; Tok, J. B.; Bao, Z., 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 2013, 25 (42), 5997-6038.
[2.] Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L., Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451 (7181), 977-80.
[3.] Zhao, Y.; Wei, J.; Li, H.; Yan, Y.; Zhou, W.; Yu, D.; Zhao, Q., A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 2016, 7, 10228.
[4.] Tee, B. C.; Wang, C.; Allen, R.; Bao, Z., An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7 (12), 825-32.
[5.] D'Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T., UV radiation and the skin. Int. J. Mol. Sci. 2013, 14 (6), 12222-48.

延伸閱讀