透過您的圖書館登入
IP:18.224.33.107
  • 學位論文

嵌合型SARS-CoV-2中和性抗體之製備與功能分析

Development and Functional Characterization of the Chimeric SARS-CoV-2 Neutralizing Antibodies

指導教授 : 張世宗
本文將於2027/08/15開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


由新型冠狀病毒 (SARS-CoV-2) 導致的新型冠狀病毒肺炎 (COVID-19) 自2019年爆發至今仍在世界大流行中。而SARS-CoV-2中的棘蛋白 (Spike protein; S) 由S1亞基和S2亞基組成,並在受體結合及病毒與宿主細胞膜融合中扮演著最關鍵的角色。我們先前的研究發現有四種S2特異性鼠源單株抗體 (S2-4D、S2-5D、S2-8D和S2-4A) 能夠藉由阻斷病毒與宿主細胞膜融合進而有效中和SARS-CoV-2,並且得知S2-4D、S2-5D、S2-8D和S2-4A所結合的抗原表位位於S(1042-1167) 區域。本論文進一步確認了S2-4D、S2-5D、S2-8D和S2-4A的關鍵結合位點位於棘蛋白的E1144、F1148、L1152和F1156。接著,抽取這四種S2特異性單株抗體之融合瘤細胞的mRNA,進行次世代基因定序,以解析抗體重鏈和輕鏈的基因序列。將S2-4A和S2-8D之重鏈和輕鏈變異區的DNA序列接到含有人類IgG1重鏈和Kappa輕鏈恆定區的質體中,再將質體轉染至Expi293F細胞以生產嵌合型S2-4A和S2-8D抗體,並將其命名為ChS2-4A和ChS2-8D。利用酵素連結免疫吸附分析法及西方墨點法,證實ChS2-4A和ChS2-8D可專一性的辨認棘蛋白和S2-8D與S2-4A的抗原表位片段。在病毒斑抑制中和試驗中,證實ChS2-4A和ChS2-8D具有中和Wild type、Delta、Omicron BA.2之SARS-CoV-2病毒株的能力。

並列摘要


The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread worldwide for causing the pandemic of the emerging coronavirus disease 2019 (COVID-19). The SARS-CoV-2 spike (S) protein, composed of S1 subunit and S2 subunit, plays the most crucial roles in receptor binding and virus-host cell membrane fusion. In our previous study, four S2-specific mouse monoclonal antibodies (mAbs) (S2-4D, S2-5D, S2-8D and S2-4A) have been demonstrated with SARS-CoV-2 neutralizing activities through blocking the virus-host cell membrane fusion. The binding epitopes of S2-4D, S2-5D, S2-8D and S2-4A are located within the region of S(1042-1167). Here I further identified that E1144, F1148, L1152 and F1156 of S(1042-1167) are the essential antigenic determinants for efficient binding by S2-4D, S2-5D, S2-8D and S2-4A. The mRNAs from the hybridoma cell lines which can produce S2-4D, S2-5D, S2-8D and S2-4A were extracted for performing the next-generation sequencing (NGS). The DNA sequences encoding for the heavy chain and light chain variable domains of S2-8D and S2-4A were cloned into the plasmids to fuse with the constant regions of the human IgG1 heavy chain and kappa light chain, respectively. The plasmids were co-transfected to Expi293F cells for expression of the chimeric S2-8D and S2-4A mAbs (referred to as ChS2-8D and ChS2-4A). ChS2-8D and ChS2-4A can specifically identify spike protein and the epitope fragments of S2-8D and S2-4A. The results of the plaque reduction neutralization test (PRNT) showed that ChS2-8D and ChS2-4A can neutralize the SARS-CoV-2 virus strains of wild type, Delta, and Omicron BA.2.

參考文獻


1. Cui, J., Li, F., and Shi, Z.L. (2019). Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17, 181-192.
2. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 395, 565-574.
3. Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Teng, J.L., Tsang, C.C., Wang, M., et al. (2012). Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 86, 3995-4008.
4. Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., and Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63, 457-460.
5. Forni, D., Cagliani, R., Clerici, M., and Sironi, M. (2017). Molecular Evolution of Human Coronavirus Genomes. Trends Microbiol 25, 35-48.

延伸閱讀