透過您的圖書館登入
IP:18.117.216.229
  • 學位論文

釕金屬錯合物含1,3-丁二炔基及戊四烯基相關反應之研究

Reactions of Ruthenium Complexes Containing 1,3-Butadiyne or Pentatetraenylidene Ligand

指導教授 : 林英智

摘要


本論文中,我們探討釕金屬錯合物Cp(PPh3)2RuCl ([Ru]Cl) 與各樣1,3-丁二烯TMS-C≡C−C≡C−R之間的反應。第一章討論TMS−C≡C−C≡C−C(OH)(C3H5)2 (1) (C3H5 = 環丙烷基) 有機物與釕金屬衍生的相關反應。此有機物與[Ru]Cl錯合物在鹼性條件下反應可得[Ru]−C≡C−C≡C−C(OR)(C3H5)2 (2, R = H; 2a, R = Me)金屬錯合物。錯合物2a在鹼性鹽KPF6環境中可與丙烯基鹵化物進行親電子加成反應而得到亞乙烯基錯合物{[Ru]=C=C(CH2CHCH2)−C≡C−C(OMe)(C3H5)2}+[PF6]- (3a);若在酸性鹽NH4PF6環境中,鹵素離子會進一步對3a的環丙烷開環。其餘的擴環反應也將於文中提到。第二章接續使用2a,在碳陽離子鹽類Ph3CPF6幫助下,2a會脫去Cε的甲氧基而形成連續五個雙鍵的戊四烯基錯合物{[Ru]=C=C=C=C=C(C3H5)2}+[PF6]- (E)。利用其Cγ帶部分正電荷的特性,加入親核性試劑可進行多種親核性加成反應而得到丙二烯基錯合物{[Ru]=C=C=C(XR)−CH=C(C3H5)2}+[PF6]- (X = O, N)。特別的是,若使用一級胺試劑會進一步發生Cδ=Cε鍵斷裂。相關反應機制與衍生物將於內文說明。第三章延續1,3-丁二烯基的研究,合成含不飽和鍵取代基苯環之1,3-丁二烯有機物。與[Ru]Cl反應後發現:在鹼性環境下,由於苯基有助於分散Cε電子,氫氧離子會攻擊Cε而進一步得到Cδ=Cε鍵斷裂後的產物[Ru]−C≡C−C(=O)Me (28)。其它錯合物部分,藉由苯基上含不飽和鍵取代基的參與,我們也得到分子內環化這類的反應。詳細機制都於文中討論。

並列摘要


A series of ruthenium acetylide complexes [Ru]−C≡C−C≡C−R ([Ru] = Cp(PPh3)2Ru) were synthesized via 1,3-butadiynes. With these long carbon chain ligands, ruthenium acetylide complex might undergo several interesting reactions. For example, treatment of the acetylide complex with an electrophilic reagent such as allyl halide, electrophilic addition on partial negative charge Cβ of the acetylide complex occurred, vinylidene complexes {[Ru]=C=C(allyl)−C≡C−R}+[PF6]- were then obtained. While treating acetylide complexes with suitable salt such as Ph3CPF6 or protic salt, pentatetraenylidene complexes {[Ru]=C=C=C=C=R}+[PF6]- were generated through the electron donation from ruthenium metal. Partial positive charge Cγ of pentatetraenylidene complexes underwent a nucleophilic addition via added alcohol or amine, ruthenium allenylidene complexes {[Ru]=C=C=C(XR′)−CH=R}+[PF6]- (X = O, N) were formed. We also observed some unexpected Cδ=Cε bond cleavage while treating ruthenium acetylide complexes [Ru]−C≡C−C(=X)−CH=R (X = O, N) with basic reagent. Proposed mechanism indicated the presence of a hydroxide ion formed from H2O attack Cε of the ruthenium complex, a ketone was then eliminated as a byproduct. Furthermore, several unsaturated bond-substituted 1,3-butadiynes were prepared. Treatment of these 1,3-butadiynes with ruthenium complex in the presence of suitable salt might cause intramolecular reactions such as cyclization.

參考文獻


[2] a) K.Yoshida, Y. Shishikura, H. Takahashi, T. Imamoto, Org. Lett. 2008, 10, 2777-2780; b) S. García-Rubín, J. A. Varela, L. Castedo, C. Saá, Chem. Eur. J. 2008, 14, 9772-9778. c) Y. Yamamoto, K. Kinpara, R. Ogawa, H. Nishiyama, K. Itoh, Chem. Eur. J. 2006, 12, 5618-5631; d) D. Tanaka, Y. Sato, M. Mori, Organometallics 2006, 25, 799-801; e) Y. Yamamoto, J. Ishii, H. Nishiyama, K. Itoh, J. Am. Chem. Soc. 2005, 127, 9625-9631; f) P. R. Chopade, J. Louie, Adv. Synth. Catal. 2006, 348, 2307-2327; g) J. A. Varela, C. Saá, Chem. Rev. 2003, 103, 3787-3801; h) M. Mori, N. Saito, D. Tanaka, M. Takimoto, Y. Sato, J. Am. Chem. Soc. 2003, 125, 5606-5607; i) Y. Yamamoto, H. Takagishi, K. Itoh, J. Am. Chem. Soc. 2002, 124, 6844-6845; j) A. L. Jones, J. K. Snyder, J. Org. Chem. 2009, 74, 2907-2910; k) H. Hara, M. Hirano, K. Tanaka, Org. Lett. 2009, 11, 1337-1340.
[3] Y. Nishibayashi, Y. Inada, M. Hidai, S. Uemura, J. Am. Chem. Soc. 2003, 125, 6060-6061.
[5] R. B. King, M. S. Saran, Chem. Commun. 1972, 1053.
[7] M. I. Bruce, M. G. Humphrey, Aust. J. Chem. 1989, 42, 1067.
[12] M. I. Bruce, Chem. Rev. 1991, 91, 197-257.

延伸閱讀