透過您的圖書館登入
IP:3.138.110.119
  • 學位論文

針對具高機動性自動駕駛系統之攔截飛彈控制器設計

Novel Control Design for Intercepting Missiles with Highly Maneuverable Autopilot System

指導教授 : 傅立成

摘要


飛行器的控制隨著時代的進步,日趨受到重視,而飛行控制器的研究也一直都是非常重要的一個課題。我們將討論飛行器中的決策部份:導引法則和自動駕駛儀,而其中攔截飛彈是我們想研究的對象。本論文使用無翼面的飛行器使得受到空氣動力學的非線性效應之影響可以減至最少。我們提出一個具有多推力向量控制 (TVC) 及側噴流控制系統 (DCS) 的強健自動駕駛儀系統,並利用背向步進控制 (backstepping control) 來進行其設計,如此我們可以將飛行器的活動範圍從大氣層內延伸至外太空。至於飛彈的導引法則,我們使用動態順滑模態 (Dynamic Sliding Mode) 來消弭切跳現象 (chattering phenomenon)並減少飛彈與目標物的誤差距離。導引法則與自動駕駛儀的整合性系統參數設計方法也被提出。整合系統及各個子系統的穩定性皆由李奧普諾夫定理 (Lyapunov stability theory) 加以分析證明。為了驗證所設計之控制器的性能,我們做了各式各樣的模擬,並包含了空氣動力學的模型,而這些模擬證實了攔截飛彈的導引法則與自動駕駛儀整合系統的可行性。

並列摘要


In this thesis, we propose a highly maneuverable autopilot system based on multiple Thrust Vector Control (TVC) mechanisms and Divert Control System (DCS) in order to extend the maneuvering range of an airframe from the place with aerodynamic influence to the place without. The strategy of the cooperation of multiple TVC mechanisms and DCS is discussed in detail. The decision part in missiles: guidance law (GL) and autopilot is presented. The GL is designed with dynamic sliding mode control in order to eliminate the chattering phenomenon caused by sliding mode control and to minimize the distance between the missile and the target without the estimation of interception time. The autopilot controller based on quaternion representation is designed using backstepping control technique to execute the attitude command. The stability of the integrated guidance/autopilot (G/A) system is analyzed by Lyapunov stability theory. In addition, we advocate a wingless missile to reduce the nonlinear effect from the aerodynamics as much as possible. Extensive simulations including aerodynamic model are finally demonstrated to verify the validity of the proposed integrated G/A systems of missiles incorporating the highly maneuverable inputs. Furthermore, we compare the performance of the simulations with that from the previous works of our research group.

參考文獻


[2] S. A. Murtaugh and H. E. Criel, "Fundamentals of Proportional Navigation," IEEE Spectrum, vol. 3, pp. 75-85, 1966.
[3] M. Guelman, "Closed-Form Solution of True Proportional Navigation," IEEE Transactions on Aerospace and Electronic Systems, vol. 12, pp. 472-482, 1976.
[4] C. D. Yang, F. B. Yeh, and J. H. Chen, "The Closed-Form Solution of Generalized Proportional Navigation," Journal of Guidance, Control, and Dynamics, vol. 10, pp. 216-218, 1987.
[5] C. D. Yang and F. B. Yeh, "Closed-Form Solution for a Class of Guidance Laws," Journal of Guidance, Control, and Dynamics, vol. 10, pp. 412-415, 1987.
[9] J. Shinar and T. Shima, "A game theoretical interceptor guidance law for ballistic missile defence," Conference on Decision and Control, vol. 3, pp. 2780-2785, 1996.

被引用紀錄


Huang, P. H. (2009). 針對具被動式測距技術之攔截飛彈控制器設計 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2009.00581
Hsueh, M. H. (2007). 針對可攔截機動目標之飛彈控制器設計 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2007.00233

延伸閱讀