透過您的圖書館登入
IP:18.188.205.139
  • 學位論文

研究幹細胞與癌細胞中PARP-1輔助KLF4調控端粒酶之表現

PARP-1 is a coregulator in KLF4-mediated telomerase expression in stem and cancer cells

指導教授 : 鄧述諄

摘要


端粒為染色體末端之特殊基因體構造,對於基因組完整性的調控以及癌細胞的產生息息相關。端粒酶是細胞內延長端粒的酵素,而端粒的長度主要由端粒酶的活性來調控。先前的研究指出轉錄因子Kruppel-like transcription factor 4 (KLF4) 會藉由結合至端粒酶中的活性催化單位,端粒反轉錄酶 (human telomerase reverse transcriptase; hTERT) 之啟動子,並活化端粒反轉錄酶表現。對於維持人類胚胎幹細胞的自我更新能力非常有貢獻。在本篇研究中,我們利用質譜分析確認poly(ADP-ribose) polymerase-1 (PARP-1) 為KLF4之交互作用蛋白。在癌細胞和人類胚胎幹細胞中,負向調控PARP-1會抑制端粒反轉錄酶表現,並使細胞內端粒酶活性下降。PARP-1會幫助KLF4結合到端粒反轉錄酶啟動子上並共同活化其基因表現,而此功能並不需要PARP-1酵素活性參與。本篇論文證明在癌細胞及幹細胞中,PARP-1為KLF4活化端粒反轉錄酶表現之共同調控者,且此發現可能對於幹細胞自我更新能力以及人類再生醫療研究有幫助。

關鍵字

幹細胞 端粒酶 端粒反轉錄酶 PARP-1 KLF4

並列摘要


Telomeres are the specialized genomic structures at the ends of chromosomes and implicated in controlling genome integrity and cancer formation. Telomere length is mainly activated by expression of telomerase that elongates telomeres. Previous study has indicated that Kruppel-like transcription factor 4 (KLF4) activates expression of the human telomerase catalytic subunit, human telomerase reverse transcriptase (hTERT), through binding to the hTERT promoter and contributes to maintaining self-renewal in human embryonic stem cells. In this study, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel KLF4-interacting partner by mass spectrometry. Downregulation of PARP-1 reduced hTERT expression and telomerase activity in cancer cells and human embryonic stem cells. PARP-1 but not its catalytic activity is required for KLF4 localizing to the hTERT promoter and transcriptional coactivating gene expression. These results demonstrate that PARP-1 is one of the regulators to turn on telomerase activity in cancerous and stem cells by coactivating KLF4-dependent hTERT expression. Consequently, these findings may be important in stem cell self-renewal and human regenerative therapy.

並列關鍵字

stem cells telomerase hTERT PARP-1 KLF4

參考文獻


Agarwal, S., Loh, Y.H., McLoughlin, E.M., Huang, J., Park, I.H., Miller, J.D., Huo, H., Okuka, M., Dos Reis, R.M., Loewer, S., et al. (2010). Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464, 292-296.
Armstrong, L., Saretzki, G., Peters, H., Wappler, I., Evans, J., Hole, N., von Zglinicki, T., and Lako, M. (2005). Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem cells 23, 516-529.
Batista, L.F., Pech, M.F., Zhong, F.L., Nguyen, H.N., Xie, K.T., Zaug, A.J., Crary, S.M., Choi, J., Sebastiano, V., Cherry, A., et al. (2011). Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474, 399-402.
Bianchi, F., Hu, J., Pelosi, G., Cirincione, R., Ferguson, M., Ratcliffe, C., Di Fiore, P.P., Gatter, K., Pezzella, F., and Pastorino, U. (2004). Lung cancers detected by screening with spiral computed tomography have a malignant phenotype when analyzed by cDNA microarray. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 6023-6028.
Bruce, S.J., Gardiner, B.B., Burke, L.J., Gongora, M.M., Grimmond, S.M., and Perkins, A.C. (2007). Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeBMP4 culture. BMC genomics 8, 365.

延伸閱讀