透過您的圖書館登入
IP:3.133.12.92
  • 學位論文

阿拉伯芥PIF3與G-box序列結合的分子機制之研究

Study on the molecular mechanism of Arabidopsis PIF3 binding to G-box cis-elements

指導教授 : 鄭貽生

摘要


在光敏素調控的訊息傳導路徑中,PHYTOCHROME INTERACTING FACTOR3 (PIF3)被認為是負調控光訊息反應的一個重要因子。先前的研究也指出PIF3是隸屬於可以結合至G-box序列的bHLH轉錄因子巨家族的成員。在本研究中,旨在探討PIF3與G-box DNA專一性結合之機制。 藉由膠體過濾層析法(gel filtration chromatography)以及分析型超高速離心(analyticalultracentrifugation; AUC)的結果顯示,bHLH是以二聚體形式與G-box(CACGTG)進行結合。經蛋白質序列比對及結構模擬等生物資訊分析方式,發現數個重要的疏水性胺基酸:Met60、Val57、Gln56、Leu53、Leu50、Tyr49、Ile47、Leu27以及Met24,其之間形成六層疏水性作用力介面以穩固蛋白質二聚體的形成。另以螢光基礎電泳遷移滯實驗(fluorescein-based electrophoretic mobility shift assay; fEMSA)測量bHLH與G-box專一性結合的能力,結果顯示bHLH除了可以與G-box結合外,也可以與其他不同E-box(CANNTG)進行結合。從蛋白質結構模擬分析,bHLH中與DNA結合的重要保守性殘基為His9、Glu13以及Arg17,Arg17負責與G-box中第四號鹼基形成氫鍵,由於在fEMSA實驗中發現bHLH在第四號鹼基位置分別置換四種鹼基後皆具結合能力,因此推估Arg17並非扮演DNA辨認的角色,另外也發現E-box上的第三號鹼基突變為空間較大的G後,整體結合能力較G-box下降許多。總結以上研究結果,可以推論一個bHLH與G-box之間可能的結合機制:藉疏水性胺基酸交互作用之二聚體bHLH先以帶正電結合溝槽與雙股DNA進行初步結合,辨認到core region之正股六號鹼基(G)以及反股之二號鹼基(A),進行氫鍵結合後,進一步靠著中心的正股四號鹼基(G)進行氫鍵結合,形成一氫鍵網絡以穩固蛋白質在DNA上的構型。

並列摘要


It is crucial for plants to sense light signals by phytochromes in development and growth. Among phytochrome signaling pathway, PHYTOCHROME INTERACTING FACTOR3 (PIF3) is believed to act as a key component that negatively regulates several light responses in plants. Previous studies have identified PIF3 as a member of basic helix-loop-helix (bHLH) transcription factor superfamily that can directly bind to a typical G-box (CACGTG) DNA. In this study, we aimed to reveal the binding mechanism between PIF3 and G-box DNA from structural view point. In this study, we examined the oligomeric states of apo form bHLH and bHLH-DNA by gel filtration chromatography and analytical ultracentrifugation. The results indicated that bHLH might form a homodimer to associate with G-box DNA. We also found some hydrophobic residues, including Met60, Val57, Gln56, Leu53, Leu50, Tyr49, Ile47, Leu27 and Met24 by sequence alignment and modellng. These residues formed a six-layer hydrophobic interaction interface that might be critical for bHLH dimer formation. From the fluorescein-based electrophoretic mobility shift assay (fEMSA) results, we found that not only G-box but also E-box (CANNTG) could bind to bHLH protein. In addition, we found some conserved residues His9, Glu13 and Arg17 that might play critical roles in G-box recognition. Combined with fEMSA and modelling results, the Arg17 that formed hydrogen bonds with the 4th base of G-box may not act as a DNA recognition residue. Although the 3th base of G-box did not participate in hydrogen bond formation, it might have steric hindrance that affected the hydrogen bond formation between Arg17 and the 4th base of G-box. In summary, we concluded a possible mechanism of bHLH binding to G-box sequence: The bHLH formed homodimers by the hydrophobic residues first. The positive-charged binding groove of bHLH could stabilize DNA at the groove. Then, the His9 and Glu13 could recognize the 6th base of G-box and the the 2th base of anti-sense G-box. The Arg17 then formed hydrogen bonds with the 4th base of G-box. Finally, they could form a hydrogen bond network to stabilize the protein-DNA structure.

並列關鍵字

PIF3 bHLH G-box fEMSA

參考文獻


Achard, P., Baghour, M., Chapple, A., Hedden, P., Van Der Straeten, D., Genschik, P., Moritz, T., and Harberd, N.P. (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc. Natl. Acad. Sci. USA 104: 6484-6489.
Alabadi, D., Gallego-Bartolome, J., Orlando, L., Garcia-Carcel, L., Rubio, V., Martinez, C., Frigerio, M., Iglesias-Pedraz, J.M., Espinosa, A., Deng, X.W., and Blazquez, M.A. (2008). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J. 53: 324-335.
Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S., and Ecker, J.R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148-2152.
Al-Sady, B., Kikis, E.A., Monte, E., and Quail, P.H. (2008). Mechanistic duality of transcription factor function in phytochrome signaling. Proc. Natl. Acad. Sci. USA 105: 2232-2237.
Al-Sady, B., Ni, W., Kircher, S., Schafer, E., and Quail, P.H. (2006). Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol. Cell 23: 439-446.

被引用紀錄


陳葳(2016)。阿拉伯芥 PIF3 之bHLH 功能區結構與功能分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201602954

延伸閱讀