透過您的圖書館登入
IP:18.223.110.131
  • 學位論文

以奈米銅硫屬化物調控二氧化碳還原產物選擇性

Tuning Carbon Dioxide Reduction Product Selectivity by Nano-Copper Chalcogenide Catalysts

指導教授 : 陳浩銘
本文將於2024/08/18開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


工業革命之後,對石化燃料的依賴使得大量二氧化碳被排放到大氣造成溫室效應和環境危害,同時也加速地球資源的枯竭。二氧化碳還原可將大氣中的二氧化碳轉化為高經濟價值的化合物,因此被視為是永續發展的關鍵技術。然而,此領域面臨產物選擇性太低的難題,在應用上還需要耗費額外的能源進行產物分離。因此,開發出具有高度選擇性的二氧化碳還原催化劑便十分重要。過往的文獻中,探討產物選擇性的因素有:電解液的種類、催化劑的晶面、尺寸和形貌、雙金屬催化劑等等,對於陰離子在催化劑中的研究著墨甚少。 本研究以陰離子交換法在室溫合成出銅之氧化物、硫化物和硒化物,並探討氧族元素陰離子對於銅產物選擇性之影響。依照產物的分佈,可將催化劑分成:銅金屬、氧化亞銅和硫化銅、硒化亞銅兩組。銅和氧化亞銅的主要產物是碳氫化合物和乙醇,硫化銅和硒化銅則幾乎都是甲酸。其中硫化銅在 -0.9 V (vs RHE) 的時候有最大的甲酸法拉第效率達58%,並且有 -7.1 mA/cm2的部分電流密度,具有最佳的催化能力。本研究更搭配臨場X光吸收和臨場X光繞射技術,發現硫化物與硒化物在高還原電位時並不會完全還原成銅金屬,仍有少數的陰離子殘留在材料中,也與能量色散X光光譜所得到的結果一致。配合反應機構的探討,本研究主張少數殘留的陰離子可以降低甲酸的中間產物 *OCOH在催化劑表面的吸附能,進而促進甲酸的生成,抑制一氧化碳路徑之產物。

並列摘要


Global warming and increasing demand of energy attract great attention in the past decade. Carbon dioxide electroreduction (eCO2RR) is one of the up-and-coming solution of this issue and offer a new route to synthesize fuels and chemicals. Plenty of transition materials were utilized in CO2RR, including Ag, Au, Zn, Sn, Pb, and their alloy. Cu is the most unique material which can convert CO2 into various products, such as CO, CH4, HCOO-, C2H4, and C2H5OH. Herein, we report a series of CO2 electroreduction catalysts via anion exchange reaction under ambient conditions. Cu and Cu2O produce manly hydrocarbons, while CuxS and Cu2Se produce mainly formate. CuS has the best CO2RR performance among all the catalysts. At -0.9 V vs RHE, CuxS can reach high formate faradic efficiency to ~58%, with partial current density jHCOO- = -7.1 mA/cm2 and largely suppress CO and hydrocarbon formation. We also briefly describe the CO2RR mechanism and explain the product selectivity between different samples. This work demonstrates that anion exchanging is an effective method and offers a new strategy for tuning CO2RR selectivity.

並列關鍵字

CO2RR electroreduction in-situ experiment

參考文獻


(1) Broecker, W. S. Science 1975, 189 (4201), 460–463.
(2) Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M. Renewable Sustainable Energy Rev. 2014, 39 (C), 426–443.
(3) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3 (1), 43–81.
(4) Spinner, N. S.; Vega, J. A.; Mustain, W. E. Catal. Sci. Technol. 2012, 2 (1), 19–28.
(5) Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508 (7497), 504–507.

延伸閱讀