透過您的圖書館登入
IP:18.227.161.132
  • 學位論文

可誘導腫瘤血管新生之微流體平台開發

Development of a Microfluidic Device for the Induction of Tumor Angiogenesis

指導教授 : 許聿翔

摘要


在本研究團隊之前的研究中,已開發出了以擴散質傳效應為主導的雙腔室三維微組織平台,一為以Vasculogenic血管新生術培養血管網絡的腔室,另一為培養腫瘤並用以誘導腫瘤血管新生的腔室,平台主要於低氧環境(5%O2)下進行培養,而因微組織平台由PDMS所組成,透過將PMDS的厚度控制在3-4mm厚且於微組織平台下方使用壓克力平板做為支撐的載台,可使微組織平台內部產生缺氧的環境。此外,給予平台內以寬度為50μm的連通孔互相連接的兩個腔室一穩定的靜水壓力,藉此控制提供的養分梯度以及腫瘤細胞及纖維母細胞釋放出血管新生因子(如VEGF)的濃度梯度,並透過測試不同培養參數培養出三維微組織。在此研究中,我們透過將腫瘤腔室的細胞通入口的設計進行改良,以順利地將平均直徑大小為763.55μm的結腸癌細胞球(SW480 tumor spheroid)和纖維母細胞(Fibroblast)混合纖維蛋白凝膠種入腫瘤腔室,但由於腫瘤細胞球結構與通道的限制,腫瘤細胞球的平均直徑在種入腔室後變成342.78μm,隨著培養至第14天,並在以擴散質傳的機制下,腫瘤細胞球逐漸增大,第14天的平均直徑達到615.71μm,若將細胞球視為一圓柱體,體積約增長3.2倍。透過缺乏養分及氧氣的三維腫瘤組織釋放出血管新生因子並產生穩定的濃度梯度,證實可以誘導血管腔室內已完成血管新生(Vasculogenesis process)的血管網絡產生血管新生芽(Angiogenic sprouts)並通過連通孔向腫瘤腔室進行生長。此外,根據腫瘤面積的大小,會影響血管網絡的平均面積比,且在腫瘤尺寸於培養14天後直徑為619.72μm時,可觀察到血管芽生進入腫瘤的現象,其中最大的腫瘤血管新生芽長度為1146.7μm,而最大的血管新生芽深度為1069.6μm,成功誘導腫瘤血管新生的現象。 透過此研究所開發的具有三維腫瘤組織的腫瘤晶片,期望在未來能建立更接近腫瘤於人體進行生長的微環境,以將其應用於疾病藥物的篩選過程,加速新藥的開發,並針對個人化醫療進行不同腫瘤細胞的研究,以此達到精準醫療的效用。

並列摘要


In the previous study of our lab, a dual-chamber microfluidic platform that can develop three-dimensional microtissue using diffusive mass transports is developed. The vessel chamber is to develop a vascular network by using vasculogenic process, and the tumor chamber is to develop tumor and to induce tumor angiogenic process. The platform is cultured in 5%O2 incubator and the microchamber in the platform can create a hypoxic environment. In addition, the dual microtissue chambers connected by five 50μm micropores provide a constant hydrostatic pressure, controlling nutrient gradients and the concentration gradient of the vascular growth factors like VEGF released by SW480 cells and fibroblasts. In this study, the dual-chamber is redesign for loading a 763.55μm diameter of SW480 spheroid into the tumor chamber for the study of tumor angiogenic process. Using the diffusive mass transports, SW480 tumor spheroid can grow to an average diameter of 615.71μm after 14-day culture. In this environment, the tumor tissue lacks nutrients and oxygen, and it can start to releasese vascular growth factors generates a stable concentration gradient across the two chambers. The experimental studies verified that angiogenic sprouting can be induced and vessels can grow into the tumor chamber for tumor developed into 619.72μm diameter. The longest length of tumor angiogenesis is 1146.7μm, and the largest depth is 1069.6μm. These experiments verify that tumor angiogenesis can successfully induce by using the developed dual-chamber microfluidic platform. In summary, the present device provides a means to create a microenvironment closer to the microenviroment of tumors in the human body, that it potentially can be applied to the screening process of drugs for accelerating drug developing process.

參考文獻


[1] J. A. DiMasi, L. Feldman, A. Seckler, and A. Wilson, "Trends in risks associated with new drug development: success rates for investigational drugs," Clin Pharmacol Ther, vol. 87, no. 3, pp. 272-7, 2010.
[2] K. Smietana, M. Siatkowski, and M. Moller, "Trends in clinical success rates," Nat Rev Drug Discov, vol. 15, no. 6, pp. 379-80, 2016.
[3] W. Mueller-Klieser, "Multicellular spheroids," Journal of cancer research and clinical oncology, vol. 113, no. 2, pp. 101-122, 1987.
[4] R. Z. Lin and H. Y. Chang, "Recent advances in three‐dimensional multicellular spheroid culture for biomedical research," Biotechnology Journal: Healthcare Nutrition Technology, vol. 3, no. 9‐10, pp. 1172-1184, 2008.
[5] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, "Multicellular tumor spheroids: an underestimated tool is catching up again," Journal of biotechnology, vol. 148, no. 1, pp. 3-15, 2010.

延伸閱讀