透過您的圖書館登入
IP:3.17.154.171
  • 學位論文

金奈米桿結構之光學特性分析

Optical Properties of Gold Nanorods

指導教授 : 郭茂坤

摘要


在金奈米粒子表面放一螢光分子,打入平面電磁波時,可使奈米粒子產生表面電漿效應。在奈米粒子的表面激發很強的電場,使螢光分子達到激發態,而螢光分子由激發態返回基態的過程中,會產生螢光增益的效果。本研究主要是探討不同幾何結構的金奈米粒子對螢光增益的影響。 本研究依據Maxwell電磁理論,利用多重中心展開法,探討研究三維金奈米桿在空氣中或水中時,入射平面電磁波或電偶極波源後的電磁場。同時利用這些電磁場去求得奈米粒子之吸收截面積、散射截面積、消光截面積、輻射效率、非輻射效率、量子效率和螢光增益。在文中探討了單顆的金奈米橢球與金奈米桿,以及直列結構的金奈米橢球與金奈米桿,還有不同的夾角的雙顆金奈米桿,以及Y字形結構金奈米桿之螢光增益現象與吸收散射消光截面積。 結果發現,同樣大小與長短比下,金奈米桿的效率會比金奈米橢球來的好。直列結構的金奈米桿的螢光增益會比單顆時強了五倍以上。Y字形結構的金奈米桿在吸收、散射、消光截面積的部分,幾乎不受平面電磁波的極化方向影響,在螢光增益部分,最弱的螢光增益倍數,依然還有超過一倍的效率。

並列摘要


If a fluorescence molecule is placed in the proximity of gold nanoparticles and impinged by a plane wave, the surface plasmon resonance will be produced. The gold nanoparticles will excite very strong electric field by the surface plasmon resonance effect. The strong excited electric field will cause fluorescence enhancement effect on the fluorescence molecule. This research primarily emphasizes on studying the difference in fluorescence enhancements between different geometric structures of gold nanoparticles. This study is based on Maxwell electromagnetic theory. By using the method of multiple multipole expansion, this study focuses on the electromagnetic fields of three dimensional gold nanorods. Absorption cross section, scattering cross section, extinction cross section, radiative decay rate, nonradiative decay rate, quantum yield, and fluorescence enhancement factor of gold nanorods are then calculated. The structures considered in this thesis include: single gold nanorod (and nano-ellipsoid), aligned gold nanorods (and nano-ellipsoids), nonaligned gold nanorods and Y-shaped gold nanorods. The result shows that when the size and aspect ratio of gold nanorods and gold nano ellipsoids are the same, the efficiency of gold nanorods is better. The fluorescence enhancement factor of aligned gold nanorods is five times the single. The absorption cross section, scattering cross section and extinction cross section of Y-shaped gold nanorods are almost unchanged when the polarization of planewave changes. While in the weakest case, the fluorescence enhancement factor of Y-shaped gold nanorods is still more than one time.

參考文獻


[7] S. S. Chang and C. R. C. Wang, “The synthesis and absorption spectra of sev-eral metal nanoparticles systems,” Chem. 56, 209-222, 1998.
[42] 陳建宏,“研究單分子與金屬奈米粒子耦合結構下之螢光增益現象,”國立臺灣大學應用力學研究所碩士論文, 2008.
[43] 陳啟三,“金屬奈米結構對螢光增益之研究,”國立臺灣大學應用力學研究所碩士論文, 2009.
[3] K. L. Kelly, A. A. Lazarides, and G. C. Schatz, “Computational electromagnetics of metal nanoparticles and their aggregates,” IEEE Comp. Scie. Engi.3 67-73, 2001.
[4] J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanopar¬ticle as¬semblies?” J. Am. Chen. Soc. 120, 4640-4650, 2001.

被引用紀錄


郭庭佑(2015)。金、銀奈米粒子之光束縛力〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.00990
羅為駿(2014)。金、銀奈米桿之光學與力學特性研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.01003
陳柏任(2013)。銀奈米結構之電漿子共振模態對螢光共振能量轉移的影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.01963
黃駿惠(2012)。奈米桿表面電漿共振模態分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2012.01583
蔡孝彥(2011)。金奈米桿及偏心球殼結構之光學特性研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.01548

延伸閱讀