透過您的圖書館登入
IP:3.145.46.18
  • 學位論文

基於FPGA的部份可重置技術之心律不整診斷支援系統

An Arrhythmia Diagnosis Support System Base on Partial Reconfiguration of FPGA

指導教授 : 張璞曾
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


心電圖(Electrocardiography)是診斷心律不整最重要的生理訊號,目前相關研究所提出的心電圖之系統架構,大致可以分為兩類,分別是診斷型和記錄型;診斷型系統是本身具有判斷病徵的功能(例如心律不整),當診斷到疑似異常的心電圖訊號時,就發出警示,並將心電圖資料傳送給醫護人員;記錄型系統則是直接儲存或是傳送原始的心電圖訊號,但是這將有資料量過大的問題,所以系統通常會將資料做壓縮的處理。 本研究提出一個整合診斷與壓縮模組之架構,其同時具備上述系統之優點;我們將此架構實現在FPGA平台上,由於FPGA能夠高效率的處理複雜的運算,並維持良好的處理速度,因此系統能夠做到即時(Real-Time)的訊號處理;另外,我們更利用FPGA的部份可重置(Partial Reconfiguration)技術,進一步降低系統的使用資源、成本、以及功率消耗;FPGA的系統架構亦適合被轉換成ASIC,將更適合作為可攜式的生理監控裝置。

關鍵字

FPGA 部份可重置 心電圖 心律不整 壓縮

並列摘要


Electrocardiography is an important method used in physiological signals to detect arrhythmia. At present, related researches in the architecture of Electrocardiography system can be classed as two kinds: diagnosis support system and recording system. Diagnosis support system has the ability to detect suspected arrhythmia. When the system detects abnormal signals, it will send alarm or begin to transmit the detected signals to the hospital. However, the recording system will directly store the original signal into the memory or sent all the data to hospital. But the amount of data may be too huge. Generally, the system will transmit the data after compression. Our research proposes an integrated diagnosis support system with compression. It has the advantages of the previous two types of systems. We implement the architecture base on FPGA. Therefore, the system can achieve real-time work since the FPGA has high performance computing ability and speed. Furthermore, partial reconfiguration technology of FPGA is used to save internal logic, power consumption, and cost. When the system is converted to application-specific integrated circuit (ASIC), it will be appropriate to used as a portable device.

參考文獻


[2] Chia-Hung Lin and Guo-Wei Lin, “FPGA implementation of Fractal Patterns Classifier for Multiple Cardiac Arrhythmias Detection,” Journal of Biomedical Science and Engineering, vol.5, pp.120-132, Mar. 2012.
[3] M. Cvikl and A. Zemva, “FPGA-oriented HW/SW Implementation of ECG Beat Detection and Classification Algorithm,” Digital Signal Process., vol.20, no.1, pp.238–248, Jan. 2010.
[8] Y. Yongming, L. Jungang and W. Jianmin, “LADAT Arithmetic Improved and Hardware Implemented for FPGA-based ECG Data Compression,” 2nd IEEE Conference on Industrial Electronics and Applications, pp.2230-2234, 2007.
[9] Yongming Yang, Xiaobo Huang, and Xinghuo Yu, “Real-Time ECG Monitoring System Based on FPGA,” 33rd Annual Conference of the IEEE Industrial Electronics Society 2007.
[10] M. Fons, F. Fons, and E. Canto, “Fingerprint Image Processing Acceleration Through Run-Time Reconfigurable Hardware,” IEEE Transaction on Circuits and Systems—II: Express Briefs, vol. 57, no. 12, pp.991-995, Dec. 2010.

延伸閱讀