透過您的圖書館登入
IP:18.217.116.183
  • 學位論文

鍺錫合金之光學特性與含錫的四族半導體共振穿隧二極體之研究

Optical Characteristics of Ge1-xSnx alloys and Sn-based Group IV Structure for Resonant Tunneling Diode

指導教授 : 鄭鴻祥
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,含有錫的四族半導體材料受到各界的關注,並希望這種材料能夠用來製做新穎的光電元件。加入錫之後,能夠改變IV-IV族半導體合金的能隙,並且有機會讓IV-IV族半導體合金從間接能隙變成直接能隙的材料,提升其光電效率。在此,我們利用低溫分子束磊晶技術,在非平衡狀態下成功的將具有高錫濃度的鍺錫薄膜成長在鍺基板(14%)與矽基板(17%)上,克服了錫在鍺中的低溶解度難題(<1%)。我們更進一步利用傅立葉轉換紅外光譜儀、橢圓儀、及光致螢光光譜儀量測鍺錫合金的光學性質,並分析不同濃度鍺錫樣品的能隙。在傅立葉轉換紅外光譜儀分析中,可以獲得鍺錫樣品的直接能隙位置。並且藉由介電常數ε1 和ε2, 可以獲得能隙臨界點E1、E1+Δ1、及E0’的變化。隨著錫濃度的增加,在E1 和E1+Δ1 的能量位置也隨著往低能量移動。進而我們能夠利用這些鍺錫薄膜的光學性質, 來設計新的光電元件與電子元件。 在理論計算方面,我們也提出利用具有直接能隙的鍺錫IV-IV 族合金來發展新 型的共振穿隧二極體,我們設計了具有直接能隙的鍺錫/矽鍺錫量子井結構,並能 夠直接成長於矽基板上。藉由最佳化量子井結構的成分與應變,可將峰谷值比大 幅的提升至7.96 以上,此結果能夠整合到互補式金氧半導體電路中,並有所運用。

並列摘要


In a recent development, tin (Sn)-based group-IV semiconductor compounds has attracted research attention for new electronic and photonic devices. The incorporation of Sn modulates the bandgap of the host IV-IV compounds, and, above a certain Sn composition, the energy band of the IV-IV compounds changes from an indirect to a direct band gap. Here, we investigate a series of Ge1-xSnx alloy with various Sn compositions up to 14% and 17% grown on Ge and Si wafer respectively using low-temperature Molecular Beam Epitaxy. To characterize band structure and optical properties of these GeSn samples, we performed spectroscopic Fourier Transform Infra-Red (FTIR), ellipsometer, and photoluminescence (PL) measurements. The Γ-to-Γ optical energy gap of Ge1-xSnx alloys can be determined by FTIR. Several critical point features, corresponding to E1, E1+Δ1, and E0’ transitions, are observed in ε1 and ε2. The positions of E1 and E1+Δ1 shift toward to lower energy as Sn composition increases. Furthermore, the optoelectronic and electronic devices can be designed for applications by those analyzed. We propose a new design of Sn-based group-IV structure for resonant tunneling diode (RTD). The proposed RTD is composed of direct-bandgap Ge1-xSnx/SiyGezSn1-y-z quantum well which can be directly grown on Si. By optimizing the composition and strain in the quantum well, a high peak-to-valley ratio of 7.69 is obtained. Those results suggest our proposed RTD design can be integrated into CMOS circuits for useful applications.

參考文獻


1.4 References
[5] M.V. Fischetti, and S.E. Laux, J. Appl. Phys. 80, 2234 (1996)
[8] Gang He and Harry A. Atwater, Appl. Phys. Lett. 68, 29 (1996).
[9] Gang He and Harry A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
[10] J. Kouvetakis and J. Menendez, Annu. Rev. Mater. Res. 36, 497 (2006).

延伸閱讀