透過您的圖書館登入
IP:3.141.29.145
  • 學位論文

暖季降水系統雨滴譜及結構特徵分析研究

Characteristics of Raindrop Size Distribution and Structure of Warm Season Precipitation

指導教授 : 周仲島

摘要


台灣位於副熱帶季風區,多變的天氣系統受地形影響,產生複雜的降水過程及雨量分布。地面雨量站在山區的數量有限且分布不均,雷達可提供高時空解析度的降雨系統資訊並進行定量降雨估計。然而,由於降雨系統多具有不均勻的雷達回波剖面,且雷達波束受地形遮蔽影響,常無法測得或是低估近地面的降雨回波。本研究在梅雨季和颱風季期間,於山區河谷及平地設置雨滴譜儀,結合雷達觀測,對於降水系統的雨滴粒徑分布特徵以及垂直結構進行分析研究。暖季的降雨形態可由降雨率時序標準差大小分類為對流性及層狀性降水,層狀降水發生比例較高,但總雨量的主要來源則是對流降水。山區對流降水的發生比例高於平地,對流降水對山區總雨量的貢獻也較平地大。分析雨滴粒徑分布參數可發現,對流降水的粒徑分布型態為Gamma分布且多為較大的雨滴,但層狀降水更趨近於負指數型態(或稱為Marshall- Palmer)分布並以較小的雨滴為主。實驗觀測所擬合的不同降雨類型的Z-R關係式彼此相近,但皆與現用於降雨估計之Z=32.5 R1.65差距甚大。應用平均降雨關係式為Z=216.4 R1.35,可有效修正平地降雨的高估。本文分析回波垂直剖面發現,平均回波隨高度降低而穩定增加,比較平均回波剖面的斜率絕對值,可以發現:山區大於平地、對流大於層狀;而降雨強度越強,斜率也越大。利用此特性將雷達回波外延修正至地面,應用於定量降水估計,可改善山區降雨低估情形達10%以上。分類不同降雨型態,應用不同斜率進行回波值外延,估計降雨更為準確。

並列摘要


In Taiwan, complicate rainfall process and distribution produced by the interaction of terrain and subtropical weather systems. Rain gauges are limited and non-uniform distributed in the mountains, and radar has the ability to provide higher time and space resolution of the precipitation system then quantitative precipitation estimation (QPE) is proceeded. However, non-uniform vertical profile of reflectivity (VPR) and beam blockage due to complex topography could result in the underestimation of reflectivity. To understand the precipitation characteristics near surface, ground-based disdrometers were deployed both in the mountains and in the coastal plain. The variation of drop size distributions (DSD) is used to classify convective versus stratiform precipitation. The statiform precipitation is the major contribution to the rainfall duration while the convective precipitation contributed to the most accumulation rainfall, and larger percentage of probability of convection was presented in mountain area than in plain. The convective DSD shows gamma distribution with more large drops and the stratiform DSD is much similar with the Marshall- Palmer distribution. Surface Z-R relationships which are derived via DSD show little difference between different topographies or different rainfall type, but all show large difference with currently used Z=32.5 R1.65. Mean surface Z-R relationship, Z=216.4 R1.35, helps to correct the underestimation of QPE in plain. The composited VPR for both convective and stratiform precipitation show increases below the melting level, both in mountain and in the plain regions. The extended VPRs and surface Z-R relationship were used to reexamine the QPE of several typhoons. The underestimation in the mountain area was improved about 10 %. We could have more accurate QPE if we consider different VPR for various precipitation types.

參考文獻


陳姿瑾,2009:西南氣流實驗之雨滴譜分析研究。國立臺灣大學大氣科學研究所碩士論文,87頁。
童崇旗,2009:西南氣流實驗期間之降水特徵與相關環境型態。國立臺灣大學大氣科學研究所碩士論文,90頁。
毛又玉,2007:台灣北部地區層狀與對流降水的雨滴譜特性。國立中央大學大氣物理研究所碩士論文,101頁。
林位總,2004:利用二維雨滴譜儀研究雨滴譜特性。國立中央大學大氣物理研究所碩士論文,89頁。
許晃雄、洪志誠、翁春雄、李明營、羅資婷、郭芮伶、柯亘重與周佳,2010:莫拉克颱風的多重尺度背景環流。大氣科學,38,1-20。

延伸閱讀