透過您的圖書館登入
IP:3.19.211.134
  • 學位論文

單原子分散銅催化劑應用於二氧化碳轉化甲酸之活性位分析

The Analysis of Active Sites in Atomically Dispersed Copper-Catalyst for Transformation of CO2 to Formic Acid

指導教授 : 陳浩銘

摘要


二氧化碳被視為是造成全球暖化的主因之一,而透過電化學還原法,能有效減少二氧化碳含量並生成具經濟價值的石化燃料。其中,過渡金屬單原子材料能最大化原子的使用效率並有效催化二氧化碳還原反應的進行。有趣的是,現階段碳基材上的過渡金屬單原子材料催化二氧化碳還原主要的產物為一氧化碳,而不存在其他種碳氫還原產物,因此透過調整中心金屬和氮之間的作用並改變單原子材料之催化能力,期許開發出具催化二氧化碳還原成碳氫產物能力的材料。 本研究透過兩階段碳化與酸洗處理,合成出分散於氮化類石墨烯碳材上之單原子銅,此材料能有效的將二氧化碳轉化成甲酸,在 0.69 V 過電位下達到甲酸生成之特定轉換頻率 672 h-1,並藉由X光光電子能譜儀和近邊緣X光吸收光譜儀、X光吸收光譜儀量測,確定具有 d_(x^2-y^2 ) 軌域電子組態的二維混價銅原子中心為催化活性位,再透過臨場K邊緣X光吸收光譜儀的量測,發現銅元素周遭的銅氮配位環境於反應進行中有顯著變化,進一步對比二氧化碳轉化為一氧化碳的常規催化劑,並說明由於銅–氮斷鍵將改變中心原子銅的電子組態,因而深具影響單原子材料之催化能力,換言之,反應進行時銅–氮斷鍵即是造就不同還原產物選擇性的主因。此外,本研究亦期許研究之結果能提供有效的方法以期提高二氧化碳還原反應之性能。

並列摘要


Electrochemical reaction of CO2 could play important role in addressing global warming issues. It offers a promising strategy to directly reduce CO2 and replace fossil fuels. Single-atom catalysts (SACs) display outstanding performance to convert CO2 into carbon monoxide. However, carbon monoxide is toxic so tuning the metal-nitrogen interaction to change the catalytic ability of SACs is an urgent issue for the development of favorable SACs. Herein, the atomically dispersed Cu atoms on nitrogenated graphene-like carbon were synthesized through a two-stage carbonization and acid treatment and exhibited an efficient conversion of CO2 to HCOOH, reaching a specific turnover frequency of 672 h-1 at mild overpotential of 0.69 V for HCOOH formation. Based on X-ray photoelectron spectroscopy and near-edge X-ray absorption spectra, X-ray absorption spectroscopy measurements, the 2D mixed-valence Cu atomic center with a d_(x^2-y^2 ) electronic configuration was identified as the catalytically active site. The conventional catalyst, which converted CO2 into CO, was further compared. By means of in-situ K-edge XAS, it is found that the differences of the coordinated environment of Cu-N during electrocatalysis are mainly attributed to the selectivity of CO2RR. We hope that our results could provide an effective approach to advance the performance of CO2RR and better the global environment.

參考文獻


(1) Jovanov, Z. P.; Hansen, H. A.; Varela, A. S.; Malacrida, P.; Peterson, A. A.; Nørskov, J. K.; Stephens, I. E. L.; Chorkendorff, I. J. Catal. 2016, 343, 215–231.
(2) Cui, H.; Guo, Y.; Guo, L.; Wang, L.; Zhou, Z.; Peng, Z. J. Mater. Chem. A 2018, 6, 18782–18793.
(3) Weber, R. S. ACS Catal. 2019, 9, 946–950.
(4) Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Adv. Sci. 2017, 5, 1700275–24.
(5) Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423–3452.

延伸閱讀