透過您的圖書館登入
IP:3.145.201.17
  • 學位論文

應用於物聯網之高穩定度與寬操作區域之物理不可被複製函數之設計

Design of Wide Range and High Stability PUF for IoT Applications

指導教授 : 劉宗德
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


一個物理上不可被複製的函數(physically unclonable function, PUF),也就是每個晶粒(die)都具有其特有的隨機函數,可以使用在安全相關的IC應用上,包括識別、鑑定或是密鑰的產生。PUF這類的電路,產生隨機的位元(bits),這些位元類似於矽的指紋,不同的晶粒就擁有不同的指紋,但卻可以在不同的操作環境底下穩定的重複產生好幾次,不同的操作環境包括供給電壓的改變、溫度的改變以及晶片老化的發生等等。在這篇論文中,我們將探討各種PUF電路,以及在設計PUF電路過程中的各種考量。 一開始我們會先著重在PUF的概要討論以及分類,接著我們會討論不同種的PUF如何將普通顯微鏡看不出來的物理差異放大成為我們能夠觀察以及使用的數位編碼,包括電路實現的特性或是在設計上使用的技巧等等。之後我們會探討PUF在過去所被提出來的許多不同特性,用以區別PUF所具有的特性是好是壞,以及其可用性。 最後著重在我們所提出的環形振盪器PUF,它在不同的供給電壓、溫度變化的情況,都提供了更好的穩定度。我們使用TSMC 0.18um以及TSMC 28nm製程來分析其電路行為,然後使用TSMC 28nm製程下線成晶片,未來會做成測試晶片並量測實際結果。我們所提出的環形振盪器PUF具有高度可辨識性以及高穩定度的特性,將是未來在硬體加密這方面的應用上不可或缺的角色。

並列摘要


A Physical Unclonable Function (PUF) is a die specific random function that can be used in a number of secure IC applications including identification/authentication and key generation. PUF is a circuit that generates random bits. These bits are like a silicon fingerprint, unique across dies, but can be reliably reproduced multiple times on a die across different operation condition, including voltage and temperature variations and aging. In this thesis, we discuss various aspects of a PUF design, with an emphasis on design considerations of PUF circuits. We first give an extensive overview and classification of PUF implementations, focusing on intrinsic PUFs. We discuss significant subclasses, implementation properties and general design techniques used to amplify sub-microscopic physical distinctions into observable digital response vectors. We survey useful properties attributed to PUFs. We then study different PUF properties which have been proposed over time. Finally, a ring oscillator(RO) PUF is proposed that provides better stability against supply voltage and temperature variation. We analyze the behavior of a RO PUF in 0.18 um and 28 nm CMOS technology nodes, respectively. Furthermore, the proposed RO PUF design has been implemented on a test chip and will be fabricated in 28 nm CMOS technology. The strong identification capabilities and high reliability offered by the proposed PUF circuit makes it a promising candidate for future applications requiring secure hardware cryptographic primitives.

參考文獻


[1] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen and P. Tuyls, “Extended abstract: The butterfly PUF protecting IP on every FPGA,” 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, Anaheim, CA, 2008.
[2] P. Simons, E. van der Sluis and V. van der Leest, “Buskeeper PUFs, a promising alternative to D Flip-Flop PUFs,” 2012 IEEE International Symposium on Hardware-Oriented Security and Trust, San Francisco, CA, 2012, pp. 7-12.
[3] K. Lofstrom, W. R. Daasch and D. Taylor, “IC identification circuit using device mismatch,” 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056), San Francisco, CA, USA, 2000, pp. 372-373.
[4] B. Gassend, “Physical Random Functions” M.S. thesis, Massachusetts Institute of Technology (MIT), USA, 2003.
[5] A. B. Alvarez, W. Zhao and M. Alioto, "Static Physically Unclonable Functions for Secure Chip Identification With 1.9–5.8% Native Bit Instability at 0.6–1 V and 15 fJ/bit in 65 nm," in IEEE Journal of Solid-State Circuits, vol. 51, no. 3, pp. 763-775, March 2016.

延伸閱讀