透過您的圖書館登入
IP:3.22.61.246
  • 學位論文

導電性聚苯胺氣體感測器的感測機制及系統之研製

Sensing mechanism and development of conducting polyaniline gas sensor and system

指導教授 : 林致廷

摘要


因應舒適及安全的生活環境需求,現今氣體感測器的發展以縮小體積進而達成微型化可攜式的系統為目標,並進一步達到低耗能及高精準度之量測。在眾多氣體感測材料中,導電性聚苯胺氣體感測材料因能做製成小面積的感測元件,進而做成可攜式氣體感測系統,即能達到感測氣體的效用,因此備受重視。導電性聚苯胺的感測機制主要是利用聚苯胺高分子材料在接觸其所偵測的氣體時會產生導電性變化來達成,然而在運用聚苯胺高分子材料感測氣體的領域中,對於感測機制的了解仍有許多尚未清楚及需突破的地方,因此在本研究中,以導電高分子聚苯胺材料所製成的感測電極,可用來感測特定毒性氣體,並以清楚說明及探討聚苯胺感測材料的感測機制為主要內容。 本研究主要感測氣體為三甲胺,在研究中發現聚苯胺感測電極對於感測三甲胺有明顯的反應,然而進行重複性感測卻發現難有良好的可重複性,再對同為三胺類氣體的三乙胺進行感測,發現所顯示的結果為類似的,因此推論在感測過程中極可能發生了化學反應,以至於感測電極難有可重複性,經過將感測前、感測中、感測後的感測電極,進行進一步的材料紫外光-可見光及紅外光的光譜分析,清楚證明聚苯胺感測電極感測三甲胺過程,材料發生了化學反應,並詳細分析感測機制的材料特性及哪些官能基發生了變化,對於此領域相關未清楚的感測機制,提供了清楚重要的說明及分析。

並列摘要


Nowadays, for the demand of comfortable and safe environment, the development of gas sensor is heading for reducing the volume and achieving the micro portable system. Furthermore, the gas sensor needs to achieve the low power and precise measurement in the future. In so many gas sensing materials, conducting polyaniline gas sensing material is attached importance because it can be manufacturing for the small area sensing electrode and portable gas sensing system. The sensing mechanism of conducting polyaniline(PANI) is making use of the conductivity change when the polyaniline material detects the gas. So it has the capability of gas sensing and is very convenient for monitoring the specific toxic gases. However, in the gas sensing field of making use of polyaniline material, the understanding of sensing mechanism still have a lot of places not clear and need to breakthrough. Therefore, manufacturing conducting polyaniline material electrode can detect the specific gas, demonstrating and discussing the sensing mechanism clearly are the primary content in this study. The sensing gas of this study is trimethylamine. In the experiment, we find the polyaniline sensing electrode has obvious response of trimethylamine. Then we proceed to test the reproducibility of gas sensing and find that has not good reproducibility. Thus, we detect triethylamine another kind of tertiary amine and find the result is similar. Therefore, we infer that the chemical interaction happens in the sensing process so it is hard to have the reproducibility of sensing electrode. After we further analyze the material on the sensing electrodes which are before, in and after the sensing process with UV-Vis and FTIR spectrum analysis. It proves clearly the polyaniline material happens the chemical reaction on the sensing electrode in the sensing trimethylamine process. And we analyze the characteristics of material and which functional groups change of the mechanism in detail. So, in this study, we provide the evident and important demonstration and analysis for the unclear related sensing mechanism in the gas sensing field.

參考文獻


[4] 張宏維 周鈺禎 蔡顯仁 徐慧萍 施正雄, 表面聲波氣體感測器之研製與應用, CHEMISTRY (The Chinese Chemical Society, Taipei) December 2007, Vol. 65, No. 4, pp. 487-498
[35]王品凡, 再摻雜聚苯乙烯-聚苯胺核殼型態奈米導電薄膜之製備, 中華民國94年7月, 國立台灣大學材料工程研究所碩士論文
[2] Maximilian Fleischer, Hans Meixner, Siemens AG, Fast gas sensors based on metal oxides which are stable at high temperatures, Sensors and Actuators B: Chemical, Volume 43, Issues 1-3, September 1997, Pages 1-10.
[3] S.S. Joshi, C.D. Lokhande, S.H. Han, A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/p-polyaniline junction, Sensors and Actuators B: Chemical, Volume 123, Issue 1, 10 April 2007, Pages 240-245.
[6] D. S Vlachos, C. A Papadopoulos, J. N Avaritsiotis, Characterisation of the catalyst-semiconductor interaction mechanism in metal-oxide gas sensors, Sensors and Actuators B: Chemical, Volume 44, Issues 1-3, October 1997, Pages 458-461

延伸閱讀