透過您的圖書館登入
IP:3.145.131.238
  • 學位論文

應用含Cu (I)-胺基之介孔 SBA-15在空氣下催化苯乙炔自身氧化耦合加成反應

Application of Cu (I) Containing Amino-functionalized SBA-15 in Catalytic Oxidative Homocoupling of Phenylacetylene under Air

指導教授 : 鄭淑芬

摘要


本研究主要是以一步合成法來製備含不同胺基官能基(diamine-、PholNH-、triamine-、PholNNH-、guanidine-、NH2-及MeNH-)之扁平狀SBA-15分子篩,使用tetraethylorthosilicate (TEOS) 作為矽源且以非離子型界面活性劑P123 (EO20PO70EO20)當作模板,在酸性條件下加入適量的ZrOCl2•8H2O來合成出二維孔洞結構p6mm的扁平狀介孔分子篩SBA-15。藉由In situ small-angle X-ray scattering找出不同胺基官能基於TEOS預水解的最佳化時間約為2小時,之後再加入胺基官能基對介孔分子篩的自組裝的干擾最小,而能製備出具有規則排列的骨架結構及孔洞大小相當一致的含胺基官能基介孔SBA-15材料。所得材料經由XRD、N2 adsorption-desorption isotherm、TGA、SEM、FT-IR、Solid state NMR等技術鑑定,可得知所合成出含不同胺基官能基的材料擁有很好的二維介孔結構、比表面積可達600 m2/g以上、孔徑分布相當集中、維持扁平狀形貌且證實胺基官能基有鑲嵌在二氧化矽的骨架中。接著,將一價銅離子(Cu+)引入含胺基官能基扁平狀SBA-15內,利用ICP-MS、XPS與XAS等技術鑑定觸媒中銅的相對含量與氧化態。主要探討配位基數目的多寡與有無半安定配位基 (hemilabile ligand) 的形成及配位基鹼性強度對催化苯乙炔自身耦合氧化加成反應的影響,以空氣作為氧化劑且在室溫下進行反應1 h後,產率即可高達90%以上且選擇率幾乎可達100%。此外,也針對鹼性添加物質進行一系列研究並發現不同鹼添加物對催化速率有極大的影響。更設計出觸媒中不僅含銅錯合物又具有強鹼性而形成協同效應,不須額外再加入Piperidine等鹼添加物質也能有相當好的催化活性與重複使用率。

並列摘要


SBA-15 mesoporous silica materials with short mesochannels were functionalized with various amino-groups, including NH2-, MeNH-, PholNH, PholNNH-, diamine-, triamine-, guanidine- groups through one-pot co-condensation of tetraethylorthosilicate (TEOS) and amino-containing trimethoxysilane in the presence of P123 as pore-directing agent and appropriate amount of Zr(IV) ions. In situ X-ray scattering was used to find out the optimal prehydrolysis period of TEOS to be around 2 h prior to the addition of the amino-functional groups, in order to prepare platelet SBA-15 materials with well-ordered p6mm pore structure and narrowly distributed pore sizes. The resultant materials were characterized by XRD, N2 sorption isotherm, TGA, SEM, FT-IR, Solid NMR. Cu(I) was anchored with amino-functionalized SBA-15 through complexation, and the resultant Cu-amine-SBA-15-p was examined as the catalysts in the oxidative homocoupling of phenylacetylene at room temperature with air as the oxidant. With organic base as the additive, the yield and selectivity of 1,4-diphenyl-1,3-butadiyne were roughly up to 90% and nearly 100%, respectively. Furthermore, different kinds of base additives were found to have enormous influence on the rates of the reaction. Efforts were made to replace the liquid base additives by designing a Cu-catalyst with strong-basicity groups in order to have a synergistic effect and achieve reusability of the catalysts.

參考文獻


[1] J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem., Int. Ed., 1999, 38, 56.
[13] H. Wieder, A. W. Czanderna, J. Phys. Chem., 1962, 28, 816.
[18] S. Y. Chen, L. Y. Jang, S. Cheng, Chem. Mater., 2004, 16, 4174.
[19] W. Shan, B. Wang, Y. Zhang, Y. Tang, Chem. Commun., 2005, 1877.
[25] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem., Int. Ed., 2006, 45, 3216.

延伸閱讀