透過您的圖書館登入
IP:18.217.139.162
  • 學位論文

應用於資料中心散熱之節能複合式迴路式熱管

Energy-Saving Hybrid Loop Heat Pipe Applied to Data Center Cooling

指導教授 : 陳瑤明

摘要


隨著雲端產業的蓬勃發展,伺服器與資料中心的設置也與日俱增,而伴隨而升的運算廢熱儼然成為急需解決的難題。目前絕大多數的資料中心採用空調氣冷方式散熱,但其中所使用的壓縮機與冰水主機相當耗電,或需仰賴濱海地區(如Facebook、Google)、涼爽氣候(如Apple、Foxconn)等天然資源協助冷卻,於設置上有地區的限制,十分不便。因此,開發一省電且不需依靠天然資源的散熱系統有其必要性。   複合式迴路式熱管為一套具高熱通量與長熱傳距離之散熱系統,於傳統迴路式熱管中加裝一低耗電量的液體泵,使原本的被動元件轉為主動元件,額外的泵功率不但延緩乾涸(dry out)的發生,更能增加系統穩定性與提升熱傳性能。故本研究欲利用複合式迴路式熱管之良好特性,開發一適用於資料中心散熱之複合式迴路式熱管散熱系統,以達節能且不需依靠天然資源協助散熱之目的。   實驗結果顯示,以鎳為毛細結構,並搭配丙酮為工作流體,在100oC操作溫度限制內,複合式迴路式熱管之總路徑長達15m,水平操作時達700W的最大熱傳性能,逆向抬升1m時達600W,最低熱阻為0.112oC/W。相較於複合式迴路式熱管,傳統迴路式熱管當總路徑長為2m時,水平操作之最大熱傳量為200W,最低熱阻為0.346oC/W;總路徑長為5.5m時,系統在水平操作或逆向抬升時皆無法順利啟動。對比之下,複合式迴路式熱管之熱傳性能、熱傳距離與抗重力能力明顯有大幅度的提升。   總結本研究之成果,複合式迴路式熱管系統以耗電量低的風扇及液體泵,即可使傳統迴路式熱管系統的各項性能得到倍數的成長,且根據本研究之估算,此散熱系統可節省現階段資料中心冷卻用電的2/3以上。耗電量低以及良好的抗重力能力,使複合式迴路式熱管未來於資料中心散熱的應用層面更具彈性與潛力。

並列摘要


With the vigorous development of cloud industry, the implement of servers and data centers grows accordingly, causing tons of waste heat waiting for a proper thermal solution. Most of the data centers adopt HVAC (Heating, Ventilation and Air Conditioning) to deal with waste heat. But it requires power-consuming compressors and chillers, or relies on the assist of natural resources such as coastal region (e.g. Facebook & Google) or cool weather (e.g. Apple & Foxconn). So the sites are limited by the locations. Therefore, it is necessary to develop an energy-saving cooling system without relying on natural resources.   Hybrid loop heat pipe (HLHP) is a novel cooling system with high heat flux and long transport distance. Adding a low-power-consuming liquid pump to a traditional loop heat pipe (LHP), it turns into an active device from a passive device. The pumping power not only puts off the dry out phenomena, but also greatly enhances the stability of the system and increases the heat transfer performance of LHP. Hence, this study aims to utilize the advantages of HLHP to develop an energy-saving HLHP applied to data center cooling.   The experimental results show that with the use of nickel wick and acetone as working fluid within 100 oC operating temperature limitation, HLHP can deal with 700W of heat at horizontal position, and 600W at 1m adverse elevation with 15m of the total transport length and 0.112oC/W of the minimum thermal resistance. In contrast with HLHP, when the total length of LHP is 2m, the maximum heat transfer performance is 200W and the minimum thermal resistance is 0.346oC/W at horizontal position. When the total length of LHP is 5.5m, it can’t successfully operate at either horizontal or adverse elevation positions. By contrast, the performance, the transport distance and the anti-gravity ability of HLHP are greatly enhanced.   To summarize, the heat transfer performance of HLHP, using a very low amount of pumping energy and fan power, can be successfully multiplied by many times compared to that of traditional LHP. According to the estimation of this study, HLHP can save more than 2/3 of electricity used in current data centers cooling system. Low power consumption and good anti-gravity ability make the future application to data center more flexible and promising.

參考文獻


[4] Y. F. Maydanik. “Loop Heat Pipes,” Applied Thermal Engineering, 2005, 25.5: 635-657.
[6] C. C. Yeh, C. N. Chen, and Y. M. Chen. “Heat transfer analysis of a loop heat pipe with biporous wicks,” International Journal of Heat and Mass Transfer, 52.19: 4426-4434, 2009.
[7] Y. F. Maydanik, M. A. Chernysheva, and V. G. Pastukhov. “Review: loop heat pipes with flat evaporators,” Applied Thermal Engineering, 67.1: 294-307, 2014.
[8] M. A. Chernysheva, S. I. Yushakova, and Y. F. Maydanik. “Effect of external factors on the operating characteristics of a copper–water loop heat pipe,” International Journal of Heat and Mass Transfer, 81: 297-304, 2015.
[10] D. Bugby, K. Wrenn, D. Wolf, E. Kroliczek, J. Yun, and S. Krein. “Multi-evaporator hybrid loop heat pipe for small spacecraft thermal management,” Aerospace Conference, IEEE, 2005.

延伸閱讀