透過您的圖書館登入
IP:3.140.188.157
  • 學位論文

單壁奈米碳管結合化療藥物SN-38與單株抗體 作為大腸癌標靶治療之藥用載體

Combining Single-walled Carbon Nanotubes With Anticancer Agents”SN-38” and EGFR antibody for Colorectal Cancer Targeting Chemotherapeutics

指導教授 : 謝銘鈞
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


單壁奈米碳管作為奈米藥物載體結合喜樹鹼衍生物SN-38以及單株抗體爾必得舒Erbitux(c225) ,並探討以單壁奈米碳管作為藥物載體的藥物釋放、細胞途徑以及標靶治療之療效。 本論文中針對不同的表皮生長因子接受器(EGFR)表現量,選擇了三株大腸直腸癌細胞,分別是HCT116、HT29及SW620。其EGFR表現量的表現程度多寡:HCT116大於 HT29大於 SW620。此藥物載體針對這三株大腸直腸癌細胞皆能抑制50%以上的細胞存活率,並且EGFR表現程度愈高、愈能夠降低癌細胞存活率,其中EGFR表現量最高的HCT116之細胞存活率只剩10%。此奈米碳管藥物載體在一般生理環境pH 7.4 的藥物釋放率(20%)遠小於在h-CE (human carboxylesterase enzyme)羧酸酯酶中(80%) 及三株癌細胞的萃取蛋白中(60%)。此藥物載體利用C225主動標靶EGFR表現程度高之癌細胞,並藉由h-CE2 酶的調控在細胞內部大量釋放,達到控制藥物釋放(drug control release)。

並列摘要


Single-walled carbon nanotubes (SWNTs) combined with chemotherapeutic drug 7-Ethyl-10-hydroxy-camptothecin (SN-38) and monoclonal antibody Erbitux (C225) . The carriers were designed to explore the specific binding ability, anti-proliferation ability against to colorectal cancer cell lines and drug control release. The monoclonal antibody Erbitux (C225) bind to EGFR specifically. Therefore the subjects here were 3 kinds of colorectal cancer cell lines with different level of EGFR expression. EGFR expression level of these cells is: HCT116>HT29>SW620. SWNT25/pyCPY carrier reduce more than 50% cellular viability to all these 3 kinds of cells. Moreover the cell viability of EGFR over-expressing cell HCT116 is only 10%. The cellular viability is lower while the cell’s EGFR expression is higher. The anti-proliferation ability of SWNT25/py38 carrier is EGFR-depending and EGFR-Targeting. The drug control release process was designed to utilizing Human Carboxylesterase enzyme (hCE) to detach the SN-38 from SWNTs .This drug-release process is supposed by hCE would broke the ester bond link the SN-38 and Pyrene. The percentage of SN38 releasing from SWNTs carrier in physical environment pH7.4 buffer(20%) is much lower than cell lysate(60%) and hCE(80%). The SWNT25/py38 carrier using C225 specifically bind to EGFR expressing cell and releasing abundant SN38 to kill the cells.

參考文獻


1. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
2. Smith, A.M., M.C. Mancini, and S. Nie, Bioimaging: second window for in vivo imaging. Nat Nanotechnol, 2009. 4(11): p. 710-1.
3. Kam, N.W., M. O'Connell, J.A. Wisdom, and H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A, 2005. 102(33): p. 11600-5.
4. Shim, M., N.W.S. Kam, R.J. Chen, Y. Li, and H. Dai, Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Letters, 2002. 2(4): p. 285-288.
5. Podesta, J.E., K.T. Al-Jamal, M.A. Herrero, B. Tian, H. Ali-Boucetta, V. Hegde, A. Bianco, M. Prato, and K. Kostarelos, Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small, 2009. 5(10): p. 1176-85.

延伸閱讀