透過您的圖書館登入
IP:18.191.228.88
  • 學位論文

毫米波頻段利用不同開路殘段及互補金屬開口諧振環之寬阻帶矩形環狀濾波器

A wide-stopband bandpass filter using dual-mode ring resonators loaded with open tuning stubs of different lengths and CSSRRs at millimeter wave band

指導教授 : 盧信嘉

摘要


本論文分別在三個不同的製程實現三個60GHz的帶通濾波器,希望比較在不同製程下類似結構之效能,可提供系統設計者依實際需求做選擇。 本論文所使用的製程分別是Kyocera與達泰公司(現已併入達方電子)的低溫共燒陶瓷(low temperature co-fired ceramics, LTCC),以及Rogers公司的RO4003基板,皆採用矩形環狀結構來設計帶通濾波器,而為了達到有效抑制不同濾波器所產生零點之間的穿透係數,設計上需要較大的特徵阻抗,因此在低溫共燒陶瓷製程中的開槽傳輸線下方多加了下穿交叉線(underpass),進而提高傳輸線之高阻抗,而RO4003製程則不需要。接著進一步加上互補金屬開口諧振環(complementary single split ring resonator, CSSRR)以有效壓制基頻與二倍頻之間的穿透係數。 Kyocera的低溫共燒陶瓷製程串接濾波器最小插入損耗為1.2dB,低3dB頻率為50.9GHz,面積為3040μm×4997μm。達泰的低溫共燒陶瓷製程串接濾波器最小插入損耗為2.9dB,低3dB頻率為51.9GHz,面積為2745μm×5193μm。RO4003製程串接濾波器的最小插入損耗為1.91dB,3dB頻寬為54.8GHz,面積為3890μm×6540μm,含CSSRRs之串聯濾波器最小插入損耗為3.4dB,低3dB頻率為53.6GHz,面積為4060μm×7406μm。 主要的差別為此結構在低溫共燒陶瓷製程中用了三層介質層,且由於有開槽故在此下面加了下穿交叉線,以盡量避免訊號由開槽互相耦和而影響到原本的響應,但因為低溫共燒陶瓷為多層介質結構,剩下的介質厚度可能會產生水平方向的介質導波管(dielectric waveguide),故在低溫共燒陶瓷製程中的前後左右各加了連通柱牆(via wall),以確保訊號不會由其他方向以及透過開槽繞至下層介質而產生其他模態。而RO4003為單層介質板製程,其下面為空氣,因此不須加下穿交叉線及連通柱牆。

並列摘要


This thesis presents the implementation of three 60GHz bandpass filters under three different processes. We will compare the performance of filters with similar structure under different processes. System designers can choose one depends on what he/she needs from these filters. These processes are low temperature co-fired ceramics(LTCC) provided by Kyocera and DT Microcircuits and RO4003 substrate from Rogers. This thesis has implemented filters in two kinds of LTCC and RO4003 by using rectangular ring structure. To achieve higher impedance of open stubs for sufficient suppression of the transmission coefficient between four transmission zeros, slots must be used with underpass in LTCC to prevent unnecessary coupling. Filter using RO4003 does not need underpass, and CSSRR (complementary single split ring resonator) are added in the ground to suppress signal leakage between first and second resonance. The measured minimum insertion loss of cascaded-filter using Kyocera LTCC is 1.2dB, the filter size is 3040μm×4997μm. The measured minimum insertion loss of cascaded-filter using DT LTCC is 2.9dB, the filter size is 2745μm×5193μm. The measured minimum insertion loss of cascaded-filter and cascaded-filter with 3CSSRRs using RO4003 is 1.91 dB, 3.4dB respectively. The filter size is 3890μm×6540μm,3890μm×6540μm respectively.

並列關鍵字

CSSRR Insertion loss

參考文獻


[9] 陳嘉緯,經由電容加載進行環型濾波器微型化,台灣大學碩士論文,民國97年。
[1] Kai Zoschke, M. Jurgen Wolf, Michael Topper, Oswin Ehrmann, Thomas Fritzsch, Karin Kaletta, Franz-Josef Schmuckle, and Herbert Reichl. “Fabrication of application specific integrated passive devices using waferlevel packaging technologies,” IEEE Trans. on Adv. Packag., vol. 30, no. 3, pp. 359-368, Aug. 2007.
[3] Hung-Yi Chien, Tze-Min Shen, Ting-Yi Huang, Wei-Hsin Wang and Ruey-Beei Wu, “Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC,” IEEE Trans. Microwave Theory and Tech., vol. 57, no. 7, pp. 1774-1782, July 2009.
[4] Ming-Fong Lei and Huei Wang, “Implementation of reduced-size dual-mode ring filters in LTCC and MMIC processes at millimeter wave frequencies,” European Microwave Conf., pp. 537-540, Sep. 2006.
[5] Cheng-Ying Hsu, Chu-Yu Chen, and Huey-Ru Chuang, “A 60-GHz millimeter-wave bandpass filter using 0.18-μm CMOS technology,” IEEE Electron Device Letters, vol. 29, no. 3, pp. 246-248, Mar. 2008.

被引用紀錄


蕭翔宇(2013)。於LTCC基板實現60GHz可切換極化微帶線平板天線〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.00860

延伸閱讀