透過您的圖書館登入
IP:3.19.55.254
  • 學位論文

以SLAM機器人建立三維大尺度場景之演算法研究

A Study on 3D Large-Scale Scenes Reconstruction Algorithms Using a SLAM Robot

指導教授 : 林達德
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


3D 虛擬場景已被廣泛應用於許多場合,如虛擬實境與地理資訊系統等應用。本研究致力於發展一套低成本、能自動重建大尺度場景之自主式移動機器人。為達到此目的機器人必須搭載自行開發之環境資訊收集裝置 (environment information collector, EIC) 來收集環境三維空間資訊與影像資訊。並且採用以擴展式卡曼濾波器為基礎的同步定位與地圖建構技術 (simultaneous localization and mapping, SLAM) 來估測機器人自身位置並連結各場景間之關係。將所收集到的深度與影像資訊分別存放於深度影像與環場影像中,在透過兩張影像間之輪廓對應降低傳統雷射與影像間對應的繁雜手續,加快色彩點雲場景的重建。多場景間的接合是利用疊代最接近點演算法 (iterative closest points, ICP) 來完成,但為了避免地形起伏所造成的影響,故考慮機器人六個方向自由度的姿態來進行場景接合。在完成場景接合後仍需透過三角網格處理建立模型表面,並運用材質貼圖來產生高品質的場景模型。本系統提出改良後的 ICP 演算法來提升場景接合之成功率與降低運算時間,平均單步執行時間為7.9秒。場景與場景之平均距離為10.6 公尺,且接合誤差小於8%。若在接合時偵測到封閉迴路,將利用 ELCH (explicit loop closing heuristic) 演算法來加以修正。

並列摘要


3D virtual scenes have been extensively applied in many fields such as virtual reality and geographic information system. The aim of our research is to develop a low-cost autonomous mobile robot which reconstructs large-scale scenes automatically. To achieve this goal, our robot is equipped with an environment information collector which acquires 3D space and image information of the environment. The EKF-based SLAM was applied to estimate the robot position and link different scenes. The range and color information was saved in panoramic images and range images respectively. The contour projection of these two images had replaced the complex matching procedures between laser points and image and speeded up color point cloud scene reconstruction. Multiple scene registration was done by applying the ICP algorithm. However, in order to avoid the effect of bumpy ground, the robot pose considered six degree of freedom (DoF). After the scene registration, the surface model was constructed by triangular mesh processing. Utilizing the texture mapping has produced high quality scene models. Our system proposed a modified ICP algorithm to improve the success rate and running time of scenes registration. The average running time was 7.9 seconds per step and the average distance between each scene was about 10.6 meters. The error in registration was less than 8%. When the loop closure was detected in a scene registration, the ELCH algorithm was applied to amend it.

參考文獻


徐嘉鴻。2011。大尺度虛擬實境場景接合與修補演算法之研究。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
賴宗誠。2012。應用多組雙眼攝影機系統進行車前三維環境模型重建。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
洪國隆。2007。使用立體視覺建立網路虛擬實境之地理資訊系統。碩士論文。臺北:國立臺灣大學生物產業機電工程學系。
周執中。2008。DWA*: 基於速度空間方法與預測式驗證之室內機器人導航演算法 。碩士論文。臺北:國立臺灣大學電機工程研究所。
劉昶志。2011。基於擴展式卡爾曼濾波器知田間機器人即時同步定位與建構地圖演算法。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。

被引用紀錄


李榕修(2015)。基於SLAM自動導航及色彩點雲演算法之大尺度場景重建方法〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.01787

延伸閱讀