透過您的圖書館登入
IP:3.142.98.108
  • 學位論文

輔助行走下肢外骨骼機器人之設計

Design of a Lower Limb Exoskeleton for Walking Aids

指導教授 : 林達德

摘要


下肢外骨骼機器人是一種動力輔具系統,可穿戴在人體上來提升使用者的力量,目前研究主流分成軍事和醫療兩方面,軍事用途可增加士兵的武器攜帶量,並幫助士兵移動來減少勞累,或提供於軍火工廠維修裝備與搬運器材的工人使用,避免職業傷害發生;醫療用途為協助患者復健,藉由模擬走路步態的過程,增加病患的復健意願和練習次數。本研究設計下肢外骨骼機器人系統(BimeExo),主要應用於模擬人類步態來輔助使用者行走,裝置上共有四顆馬達安裝在兩足的髖關節和膝關節處,踝關節以彈性止滑墊組成,並設計多重安全機制以避免發生危險。為了模擬人類走路步態,設計了人體髖關節與膝關節的角度量測系統,藉由量測出來的步態角度資料,建立出使用者的參數化步態模型,並依此分析不同人之間的差異。此外參數化步態模型在應用於下肢外骨骼機器人時,即可依照使用者身體參數的差異而調整成不同的步態動作。BimeExo系統走路步行速度約0.05 m/s,上下樓梯的速度約20 s/step。為因應一般居家復健使用,設計五種常用動作,站立、坐下、走路和上下樓梯,使用者僅需要輸入身高資訊,利用拐杖遙控器和安裝在身體上的角度感測器作為有限狀態機的轉換條件,進而切換狀態以防止錯誤步態發生。

並列摘要


Lower limb exoskeleton is a powered orthosis can be worn by human to enhance users' ability. Currently divided into military and medical aspects. Military applications help soldiers move with more weapons and reduce fatigue, or help workers transport equipment in the factory to avoid occupational injuries. In the medical purposes, it can assist the patients to rehabilitate by walking simulation, and increase the number of exercise. The study designed a lower limb exoskeleton robotic system (BimeExo), mainly used in simulating gait to assist human walking. The system with four motors mounted on the both hip and knee. For supporting the human and robot, it has two elastic pads on ankle. In safety issue, it composed of multiple security mechanisms to avoid the danger. In order to simulate human gait, the study build a human measurement system to get the angle at hip and knee. By using the gait data to create parametric gait model and researchers can analyze the different by this model. According to different users can be adjusted to different body parameters for gait motion, then put the parameters into the robot platform to get the hip and knee angle. The walking speed of the BimeExo system is about 0.05 m/s, and the speed of the up and down the stairs is about 20 s/step. The system designed five common motion, standing, sitting, walking up and down stairs for general normal use at home. The user only needs to input the height and weight into the system, and use special crutch controller and angle sensors on the body as finite state machine transition conditions. Then user can control the robot and prevent danger.

參考文獻


Aida, T., H. Nozaki, and H. Kobayashi. 2009. Development of muscle suit and application to factory laborers. ICMA International Conference on Mechatronics and Automation.1027-1032.
Arevalo, J. C., D. Sanz-Merodio, M. Cestari, and E. Garcia. 2012. Parameterized inverted and double pendulum model for controlling lower-limb active orthosis. IEEE International Conference on Robotics and Biomimetics (ROBIO).1899-1905.
Contreras-Vidal, J. L., and R. G. Grossman. 2013. NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).1579-1582.
Contreras-Vidal, J. L., A. Presacco, H. Agashe, and A. Paek. 2012. Restoration of Whole Body Movement: Toward a Noninvasive Brain-Machine Interface System. Pulse, IEEE. 3:34-37.
Dollar, A. M., and H. Herr. 2008. Design of a quasi-passive knee exoskeleton to assist running. IEEE/RSJ International Conference on Intelligent Robots and Systems.747-754.

被引用紀錄


何柏融(2017)。輔助型下肢外骨骼機器人控制系統之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201703566

延伸閱讀