透過您的圖書館登入
IP:18.222.86.149
  • 學位論文

製備非溶劑誘導巨孔電紡絲纖維及其吸附行為探討

Preparation of Nonsolvent-Induced Macroporous Electrospun Fibers and Their Adsorption Behaviors

指導教授 : 童世煌

摘要


電紡絲技術是一種簡單製造連續纖維的方法,細小的纖維具有高比表面積的特性,而孔洞纖維更可進一步的提昇纖維比表面積;不過,一般透過環境濕度影響所製造的纖維孔洞僅止於纖維表面,相對於纖維表面積的提昇有限。   本研究中使用聚苯乙烯/氯苯/二甲基亞碸的三相系統,成功的利用非溶劑誘導相分離法(non-solvent induced phase separation, NIPS)製造出一系列具有特殊孔洞結構的電紡纖維,透過改變非溶劑含量調控纖維孔洞尺寸,其分佈達50至2000奈米之廣,另外還可透過添加鹽類進一步調整纖維尺寸與孔洞分佈,而利用非溶劑誘導相分離法獲得的孔洞深入纖維內部,可有效提昇其比表面積,且以上多種纖維孔洞型態只需要透過單純的電紡過程即可獲得,完全不需任何後處理。我們更進一步的結合雙軸電紡絲技術簡化改變孔洞結構的程序,只需簡單的調控內外軸流速即可產生多樣化的孔洞結構,並且透過雙軸電紡絲可獲得罕見的中空多孔纖維結構。   而因聚苯乙烯其疏水但不疏油的特質,使此多孔纖維同時具有超疏水與超吸油的特性,這代表了此多孔纖維應用於油污吸附時具有非常良好的選擇性,而其中具有微米級杯狀開口的孔洞纖維更是展現了優越的油污吸附能力,對於矽油的極限吸油含量高達900 g/g,吸附速率達150 g/min,對於真空幫浦油的極限吸油含量可達650 g/g,吸附速率則高達210 g/min,與其他文獻中的聚苯乙烯纖維吸附材料相比有高達5倍的提昇,而透過一系列不同纖維孔洞尺寸的測試,發現纖維表面開孔尺寸是影響吸附速率的主要關鍵。   本論文中亦進行了纖維濾材的空氣過濾實驗,分別透過單一與混合不同型態纖維吸附測試,藉此了解不同纖維結構對於過濾吸附空氣汙染物的貢獻,並比較液體與氣體吸附機制的差異,針對不同形式的汙染物提出合適的纖維結構設計方案。

並列摘要


Electrospinning technique is a straightforward method to produce continuous micro/nanoscale fibers. The common method for manufacturing porous electrospun fibers is vapor induced phase separation (VIPS). However, because the moisture condenses as water drops mainly on top of the solution, the remaining pores are generally isolated and only formed on the surface. Thus the increase of the specific surface area of fibers produced by the VIPS method is limited In this study, the polystyrene/chlorobenzene/DMSO ternary system successfully produce a series of nonsolvent-induced porous fibers. The distribution of the pores was 50 to 2000 nm. The fiber size and the porous morphology can be simply controlled by adjusting the compositions of solvents and organic salt. The fibers with macroporous structure throughout can be fabricated by a simple one-step electrospinning process from the ternary system, without post-spun treatment. Furthermore, we used the co-axial electrospinning technique to adjust the pore structure by controlling the feed rates of inner and outer flows, which can produce a variety of porous structures, including the uncommon hollow porous fibers. Since PS is a hydrophobic but not an oleophobic material, the PS fibrous sorbents can selectively adsorb oil while repelling water. The microscale opening porous structures greatly enhances the oil adsorption capacity of the fibrous sorbents. The maximum adsorption of silicone oil was up to ~ 900 g/g, as well as significantly increases the adsorption rate, giving a considerable leap from the previous studies. The air pollutant adsorption tests were also conducted using different types of fibers as filters to understand the relationship between the fiber structure and the adsorption efficiency of aerosols. The design principles for applying appropriate fiber structures to different forms of pollutants are proposed.

參考文獻


58.Wang, Z.; Pan, Z.; Wang, J.; Zhao, R., A Novel Hierarchical Structured Poly(lactic acid)/Titania Fibrous Membrane with Excellent Antibacterial Activity and Air Filtration Performance. J. Nanomater. 2016, 2016, 17.
1.Tomer, V.; Teye-Mensah, R.; Tokash, J. C.; Stojilovic, N.; Kataphinan, W.; Evans, E. A.; Chase, G. G.; Ramsier, R. D.; Smith, D. J.; Reneker, D. H., Selective Emitters for Thermophotovoltaics: Erbia-modified Electrospun Titania Nanofibers. Sol. Energy Mater. Sol. Cells 2005, 85, 477-488.
2.Laforgue, A., All-textile Flexible Supercapacitors Using Electrospun Poly(3,4-ethylenedioxythiophene) Nanofibers. J. Power Sources 2011, 196, 559-564.
3.Yang, L.; Fitié, C. F. C.; van der Werf, K. O.; Bennink, M. L.; Dijkstra, P. J.; Feijen, J., Mechanical Properties of Single Electrospun Collagen Type I Fibers. Biomaterials 2008, 29, 955-962.
4.Thavasi, V.; Singh, G.; Ramakrishna, S., Electrospun Nanofibers in Energy and Environmental Applications. Energ. Environ. Sci. 2008, 1, 205-221.

延伸閱讀