透過您的圖書館登入
IP:3.129.13.201
  • 學位論文

雙光子聚合技術應用於大範圍之產品發展與製造

Development and Fabrication of Large Scale Structures by Two-Photon Polymerization Technology

指導教授 : 鍾添東

摘要


本研究著眼於以雙光子聚合技術應用於大範圍三維尺寸產品的發展與製造。此雙光子微製造加工系統採用4W 的高功率飛秒雷射、用於xy方向定位的振鏡掃描器、z軸壓電控制平台及不同放大倍率的顯微物鏡。傳統的小範圍TPP製造系統僅能以30毫瓦的雷射功率製作小於300微米的成品。本系統以4W 的高功率雷射及10倍物鏡可製作的最佳光斑尺寸可縮減至2.5微米,且長寬比為30,所能製作的範圍約為2.3mm × 2.3mm × 1mm;搭配50倍物鏡時可製作的最佳光斑尺寸可縮減至0.6微米,且長寬比為13,所能製作的範圍約為0.45mm × 0.45mm × 0.5mm。在應用層面上可製作焦距為1mm 且具有聚焦能力的菲涅耳透鏡。亦可以高品質製作41 × 41 的光柵,其大小為1.45 mm × 1.45 mm 且線間距為36.25 微米。此外可成功製作用於眼神經細胞自我重建的管狀結構,其直徑為0.3 mm, 長度為 0.7 mm 且具有9個直徑為40微米的孔洞。

並列摘要


This thesis studies development and fabrication of large-scale 3D structures by two-photon polymerization (TPP). The large-scale TPP fabrication system is equipped with a 4W high power femtosecond laser, a xy galvanometer scanner, a z-axis piezo-driven translation stage, and different objective lens. Traditional small-scale TPP system usually fabricates micro products within 300 μm size with 30 mW laser power. For using 4W laser power with using 10x objective, best typical lateral voxel size is reduced to 2.5 um with aspect ratio of 30 and the manufacturing range in xyz axes is about 2.3mm x 2.3mm x 1mm. For 50x objective, best typical lateral voxel size is reduced to 0.6 um with aspect ratio of 13, the manufacturing range in xyz axes is about 0.45mm x 0.45mm x 0.5mm. In application, a Fresnel Zone Plates(FZP) lens with focal length 1 mm is fabricated and can be used for focusing light. A 41 x 41 micro gratings with 1.45mm x 1.45mm size and 36.25μm line gap are also manufactured with good quality. A micro tube structure for eye nerve cell reconstruction with 0.3mm diameter, 0.7mm length, and nine 40-μm holes is successfully manufactured.

參考文獻


[1] D. Tan, Y. Li, F. Qi, H. Yang, and Q. G. Dong and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Applied Physics Letters, vol. 90, no. 7, 2007.
[2] M. Power, G. Z. Yang, "Direct laser written passive micromanipulator end-effector for compliant object manipulation," in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.790-797, 2015.
[3] P. S. Timashev, M. V. Vedunova, D. Guseva, E. Ponimaskin, A. Deiwick, T. A. Mishchenko, E. V. Mitroshina, A. V. Koroleva, A. S. Pimashkin, I. V. Mukhina, V. Ya. Panchenko, B. N. Chichkov and V. N. Bagratashvili, "3D in vitroplatform produced by two-photon polymerization for the analysis of neural network formation and function," Biomedical Physics & Engineering Express, vol. 2, no. 3, p. 035001, 2016.
[4] T. StichelEmail, B. Hecht, R. Houbertz, G. Sextl, "Compensation of spherical aberration influences for two-photon polymerization patterning of large 3D scaffolds," Applied Physics A, vol. 121, no. 1, pp. 187-191, 2015.
[5] N. Bertin, T. Spelman, O. Stephan, L. Gredy, M. Bouriau, E. Lauga, P. Marmottant, "Propulsion of Bubble-Based Acoustic Microswimmers," Physical Review Applied, vol. 4, no. 6, p. 064012, 2015.

延伸閱讀