透過您的圖書館登入
IP:3.17.184.90
  • 學位論文

應用於近紅外光生物醫學與發光二極體之多功能奈米粒子

Multiple Functional Nanoparticle for Near-Infrared Light Biomedical and Light-Emitting Diodes Applications

指導教授 : 劉如熹
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


惡性腫瘤當前為全球死亡之主要原因,現今發展之各種癌症檢測技術皆具其特點與不足之處,而近紅外光對組織之低干擾與損害,故可針對較深層之組織進行治療,於生物醫學之應用深具潛力,其中癌症腫瘤之診斷與治療已成為當前研究中非常活躍之領域。本研究以近紅外光為主軸分成兩部分,發光二極體之封裝與癌症治療。 第一部分研究之近紅外光奈米粒子則以中孔洞二氧化矽球(mesoporous silica nanoparticle; MSN)作為模板,將鎵酸鋅螢光粉(ZnGa2O4:Cr3+,Sn4+; ZGOCS)燒結於孔洞中,避免顆粒因高溫而聚集,使其達奈米之大小,同時亦增加其分散性,並藉由鉻與錫離子共摻雜比例及前驅液濃度之調整,達最佳化之發光強度,於微米晶片之封裝測試上具良好光轉換效率之表現。 第二部分設計之奈米診斷治療系統可分為奈米複合材料與奈米載體。奈米複合材料由中孔洞二氧化矽層包覆之奈米金棒(mesoporous silica shell coated gold nanorod; AuNR@mS)與魚精蛋白包覆之上轉換奈米粒子(upconversion nanoparticle; UCNP)以靜電吸附作用結合。而奈米氣泡(nanobubble)則作為奈米載體,藉由高滲透長滯留效應,穩定地將奈米複合材料運送至癌細胞中進行顯影與治療。奈米氣泡具超音波之顯影功能,已廣泛運用於臨床醫療中,藉由包埋奈米複合材料,可與上轉換奈米粒子之螢光顯影達多重影像之功能。上轉換奈米粒子作為能量轉移之媒介,將近紅外光808 nm雷射之能量轉移至奈米金棒使其產生光熱效應,並透過自身綠色螢光觸發附載於孔洞中之光敏劑Merocyanine 540使其產生活性氧物質,抑制腫瘤生長,具良好之熱殺與毒殺效果。

並列摘要


The leading causes of death in the world is malignant tumors. In nowadays, various cancer detection technologies are developed with their own advantages and shortcomings. However, near-infrared (NIR) light has the highest potential because of the low absorption of blood and tissues avoiding the damage of heat which provides the treatments with deeper penetration. It revealed the importance of cancer treatments in the biomedical field. My master thesis is focused on NIR light and would like to be divided into two parts of the light-emitting diode (LED) package and cancer treatment. In the first part, the NIR nanoparticles (ZnGa2O4:Cr3+,Sn4+) synthesized are loaded with mesoporous silica nanoparticle. The aggregation of phosphors is avoided with good dispersibility by the template method. However, the photoluminescence intensity is increased via tuning the doping ratio of chromium and tin ions and the concentration of the precursor solution. Moreover, the package test shows good performance and light conversion efficiency. In the second part, the designed nanosystem is composed of the mesoporous silica shell coated gold nanorod, the protamine coated upconversion nanoparticle and nanobubble. After embedded the upconversion nanocomposites, the multiple images can be approached with fluorescence and ultrasound. The upconversion nanoparticle transfers energy from 808 nm laser source to the gold nanorod performing the photothermal effect. The photosensitizer is also triggered via green fluorescence of upconversion nanoparticle which can generate reactive oxygen species to inhibit tumor growth showing the good curable effect in cancer treatment.

參考文獻


參考文獻
[1] Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C., Wide-Band IR Imaging in the NIR-MIR-FIR Regions for in Situ Analysis of Frescoes. Proc. SPIE 2011, 8084, 808406.
[2] Cho, S.; Shin, M. H.; Kim, Y. K.; Seo, J. E.; Lee, Y. M.; Park, C. H.; Chung, J. H., Effects of Infrared Radiation and Heat on Human Skin Aging in Vivo. J. Investig. Dermatol. Symp. Proc. 2009, 14, 15-19.
[3] Kamimura, M.; Matsumoto, T.; Suyari, S.; Umezawa, M.; Soga, K., Ratiometric Near-Infrared Fluorescence Nanothermometry in the OTN-NIR (NIR II/III) Biological Window Based on Rare-Earth Doped β-NaYF4 Nanoparticles. J. Mater. Chem. B 2017, 5, 1917-1925.
[4] Chan, M. H.; Liu, R. S., Advanced Sensing, Imaging, and Therapy Nanoplatforms Based on Nd3+-Doped Nanoparticle Composites Exhibiting Upconversion Induced by 808 nm Near-Infrared Light. Nanoscale 2017, 9, 18153-18168.

延伸閱讀