透過您的圖書館登入
IP:18.189.14.219
  • 學位論文

選擇性光催化還原水中硝酸鹽為氮氣之研究

Selective photocatalytic reduction of nitrate to nitrogen on Pd-Cu/TiO2 catalysts

指導教授 : 駱尚廉

摘要


硝酸鹽為地下水體中主要的污染物之一,近年來由於農業過量使用含氮肥料造成地下水中硝酸鹽濃度逐漸上升,若累積將對人體健康造成危害。現行處理技術包括離子交換、薄膜逆滲透、化學還原、生物脫硝等方法不僅操作維護成本高且出流水皆需要後續處理。本研究利用光沉積法將鈀、銅負載於二氧化鈦上作為光催化劑,並以甲酸為電洞捕抓劑進行硝酸鹽之光催化降解反應。   光催化還原法是利用UV光催化二氧化鈦而產生電子電洞分離 (e--h+),藉由電洞捕抓劑移除帶正電的電洞(h+),讓電子(e-)有效導引至催化劑表面,負載金屬將進一步還原硝酸鹽。實驗結果證明光催化反應能快速且有效的降解硝酸鹽,且負載複合金屬之光催化劑比單金屬擁有更高的催化活性及產氮氣選擇性。此外,本研究亦探討不同電洞捕抓劑種類及濃度和不同金屬負載比例對於硝酸鹽還原反應速率及選擇性的影響。   本研究結果顯示光催化脫硝系統在最適操作條件下有最佳氮氣生成效果:(1)以濃度0.04 mol/L的甲酸作為電洞捕抓劑,(2)以負載比例1% Cu-1% Pd/TiO2為光催化劑時能將40 mg-N/L之硝酸鹽完全降解,並擁有高達80%之產氮氣選擇率。

並列摘要


Nitrate is one of the significant pollutants in the groundwater system which concentration in groundwater is gradually increasing in recent years mainly due to overusing of nitrogenous fertilizer, and it would cause serious health risks. Current technologies such as ion exchange, reverse osmosis, chemical reduction and biological denitrification usually cost highly and need post-treatment of the produced effluents. In this study, titania supported palladium-copper bimetallic catalysts prepared by photodeposition are applied to the photocatalytic reduction of nitrate in the presence of formic acid as a hole scavenger. Under illumination of UV light, the photoexcitation of TiO2 leads to the formation of electron-hole pairs. After the photogenerated holes were captured by hole scavenger, the electrons are transferred to the surface of photocatalysts, then loaded metal could carry out the nitrate reduction. The experimental results show great catalytic performance, and compared with monometallic catalysts, bimetallic catalysts exhibit more excellent photocatalytic reduction activity and selectivity. Furthermore, the effects of different type and concentration of hole scavengers and metal loading ratio on conversion of nitrate and selectivity for nitrogen are also systematically investigated. Abundance of data from experimental factors reveal that photodeposited 1%Cu-1%Pd/TiO2 bimetallic catalysts exhibit 100% nitrate conversion for 40 mg-N/L nitrate solution and as much as 80% selectivity for nitrogen under the modification of 0.04 mol/L formic acid as a hole scavenger. The results demonstrate that the photocatalytic reduction of nitrate is a potent denitrification technique, especially with the development of applications involving sunlight.

參考文獻


[43] 翁士奇,2005,「奈米級零價鐵及銅鐵雙金屬還原水中硝酸鹽之研究」,碩士論文,國立台灣大學環境工程研究所。
[44] 洪宜君,2006,「零價鋅及鈀鋅雙金屬對水中硝酸鹽還原脫硝之研究」,碩士論文,國立台灣大學環境工程研究所。
[45] 曾文裕,2006,「催化性雙金屬還原水中硝酸鹽之研究」,碩士論文,國立台灣大學環境工程研究所。
[46] 行政院環境保護署,「94年環境水質監測年報-地下水水質篇」,2006。
[1] Bond, G. C., “Heterogeneous catalysis: principles and applications,” Oxford: Clarendon Press.

被引用紀錄


李昱宏(2010)。利用生命週期評估探討五種移除水中硝酸鹽之環境友善技術〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.03019
顏維志(2010)。光還原法處理添加異丙醇之全氟辛酸水溶液〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.02921
陳秀瑜(2009)。氧化鈦奈米管負載銅鈀異相催化水中硝酸鹽〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.02180
陳思穎(2009)。選擇性催化加氫技術還原水中硝酸鹽為氮氣之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.02176

延伸閱讀