透過您的圖書館登入
IP:13.58.8.127
  • 學位論文

使用假晶式高速電子遷移率電晶體之V頻段疊接功率放大器之研究

Research of V-band pHEMT Cascode Power Amplifiers

指導教授 : 王暉

摘要


本論文中,設計並實現三個高頻放大器,分別包含一個V頻段緩衝放大器以及V頻段功率放大器,最後為一個67 GHz高輸出功率之功率放大器,皆採用高速電子遷移率電晶體(pHEMT)製程製作。 論文第一部分描述了一個應用於V頻段的緩衝放大器,採用0.15微米低雜訊pHEMT製程,此電路為兩級疊接組態的放大器設計。高頻的疊接組態電路通常會使用共面波導方式來作電路佈局,以減少寄生效應,而此電路在量測時,在60 GHz可以有約18 dB的小訊號增益以及3.5 dBm的飽和輸出功率。 論文第二部分呈現了一個操作於V頻段的高輸出功率之功率放大器,採用0.15微米功率 pHEMT製程,此電路亦為兩級的電路設計,利用疊接組態的架構來當驅動級,共源級架構當輸出級,以達到較大的輸出功率,對於架構的選取以及電路佈局方式亦會詳加說明,最後量測的結果,在操作頻率為60 GHz時,可以達到約22 dBm的輸出飽和功率。 論文第三部分呈現了一個操作於67 GHz的高輸出功率之功率放大器,採用0.15微米低雜訊pHEMT製程,此電路為兩級的電路設計,兩級電路皆採用疊接組態來達到較大的增益,在功率預算上的考慮,以及最後使用藍吉耦合器作平衡式的架構,可以達到增加輸出功率以及改善回返損耗的效果,而最後在量測和模擬上有不少誤差,這部分也會提出來討論。 由於電晶體高頻模型不準確,導致所設計的電路在量測和模擬結果上有不少誤差,為了使得模擬和量測結果更加吻合,根據穩懋所提供的電晶體小訊號量測資料,重新萃取了小訊號模型的參數,並且根據這些電晶體模型參數及直流-電流電壓曲線來建立Angelov非線性電晶體模型,而使量測和模擬結果有更佳的一致性。

並列摘要


In this thesis, three high frequency amplifiers are designed and investigated, including a V-band buffer amplifier, a V-band power amplifier and a 67-GHz power amplifier. These three circuits are implemented using pseudomorphic high electron mobility transistor (pHEMT) technology. The first part of this thesis describes the design of a buffer amplifier for V-band applications using 0.15-um low-noise pHEMT technology. The circuit consists of two stages cascode amplifier and designed using coplanar waveguide (CPW) structure to reduce the parasitic effect. The measured small signal gain is about 18 dB, and the measured saturation output power is about 3.5 dBm at 60 GHz. A power amplifier with high output power in 0.15-um power pHEMT technology is presented next. This circuit is also a two-stage design adopting cacode configuration as the driver stage and common-source configuration as the power stage. The measured saturation output power is about 22 dBm at 60 GHz. Finally, a 67-GHz power amplifier using 0.15-um low-noise pHEMT technology is presented. This circuit is realized with two-stage cascode configuration to achieve high gain and high output power. The consideration of power budget and balanced structure using Lange coupler are discussed in this chapter. There are discrepancies between simulation results and measurement results, and the reason will be discussed also. Because of the inaccuracy of the transistor model at higher frequency, the simulation results of the circuit do not agree with the measurement results. The linear model parameters are re-generated with the measured device data provided by the foundry WIN Semiconductors. Based on the new linear model parameters and the dc-IV curves, the Angelov model is established. With the new nonlinear model, the simulation results and measurement results of the circuits show better agreement.

參考文獻


[2] J. Lee, Y. Chen, and Y. Huang, “A Low-Power Low Cost Fully-Integrated 60-GHz Transceiver System with OOK Modulation and On-Board Antenna Assembly,” IEEE J. Solid-State Circuits, vol. 45, pp. 264–275, Feb. 2010.
[4] C. Y. Law, A.-V. Pham, “A High-Gain 60GHz Power Amplifier with 20dBm Output Power in 90nm CMOS,” ISSCC Dig. Tech. Papers, pp.426-427, Feb. 2010.
[7] C. Karnfelt, R. Kozhuharov, H. Zirath, and I. Angelov,“ High-purity 60-GHz-band Single-Chip x8 Multipliers in pHEMT and mHEMT Technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp.2887–2897, Jun. 2006.
[8] S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna,A. Alping, and C. Fager, “Single-chip 60 GHz Transmitter and Receiver MMICs in a GaAs mHEMT Technology,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 801-804, Jun. 2006.
[9] H.-Y. Chang, H. Wang, M. Yu, and Y. Shu, “A 77-GHz MMIC Power Amplifier for Automotive Radar Applications,” IEEE Microwave and Wireless Components Lett., vol. 13, pp. 143-145, Apr. 2003.

延伸閱讀