透過您的圖書館登入
IP:18.222.118.14
  • 學位論文

印刷式毫米波空腔共振天線與陣列之研製

Design and Implementation of Printed Millimeter-Wave Cavity Resonant Antenna and Arrays

指導教授 : 林怡成
本文將於2026/08/17開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本篇論文提出設計在毫米波頻段的空腔共振天線,由一層部分反射面和一層金屬接地面組成,並且製作在同一塊多層印刷電路板上。以幾何光學觀點來看,部分的波被PRS反射,部分的波透射,反射的波會被接地面再度反射,形成一種空腔共振天線。本論文首先探討設計部分反射面的週期大小及天線高度,進而討論天線的增益及槽孔效率分析,接著使用帶狀天線饋入,最後在板緣加上通孔(Plating Through Hole)排列成金屬壁面,藉此增加天線的增益和減少陣列天線模組之間的干擾,以便於之後陣列天線的設計。本論文提出一體成型之空腔共振天線可以工作在毫米波頻段,其與低頻的設計差異在於低頻的共振腔是以空氣當介質。操作在29 GHz 頻率下,天線正向輻射(broadside)增益可達到17dBi,而陣列天線的部分,正向輻射增益可達到22dBi。

並列摘要


This thesis presents a printed millimeter-wave cavity resonant antenna (CRA). The antenna consists of a partially reflective surface (PRS) and a metallic ground plane designed on a multi-layered printed circuit board (PCB). As the excited EM waves bounced back and forth within the PRS and the ground plane, this type of antenna is also called cavity resonant antenna (CRA) or Fabry P eacute;rot antenna (FPA). Firstly, we studied the effects of the period length and the cavity height on the antenna gain and then optimized for the aperture efficiency. Secondly, we used the L-shaped stub to feed the cavity resonant antenna. Lastly, we employed a metallic wall, realized by the Plated Through Hole (PTH) at the edge boundary of the presented CRA. Using the metallic wall may increase the antenna gain and suppress the coupling among the array elements. This thesis proposed a feasible design that cavity resonant antenna can be designed in the millimeter wave band with a solid PCB, compared to the low-band (below 10 GHz) case that the air cavity must be used. At 29 GHz, the presented antenna achieves a broadside gain of 17dB for a CRA module. Additionally, an extended design of 2x2 arrays was developed where the antenna gain may be enhanced up to 22dB.

參考文獻


[1] G. V. Trentini, “Partially reflective sheet arrays,” IRE Trans. Antennas and Propag., vol.4, no.4, pp.666-671, Oct.1956.
[2] A. Feresidis and J. Vardaxoglou, “High gain planar using optimized partially reflective surfaces,” IEE Proceedings microwaves, Antennas Propagation, vol. 148, no. 6, pp.345-350, Dec.2001.
[3] N. Gu eacute;rin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A Metallic Fabry–Perot Directive Antenna,” IRE Trans. Antennas and Propag., vol. 54, no. 1, pp.220-224, Jan. 2006.
[4] D. R. Jackson, G. Lovat, J. Chen, D. R. Wilton, and A. A. Oliner, “The Fundamental Physics of Directive Beaming at Microwave and Optical Frequencies and the Role of Leaky Waves,” Proceedings of the IEEE, vol. 99, no. 10, pp.1780-1805, Oct. 2011.
[5] D. R. Jackson, and N. G. Alexopoulos, “Gain Enhancement Methods for Printed Circuit Antennas,” IEEE Trans. on Antennas and Propag., vol. ap-33, no. 9, pp.976-987, Sep. 1985.

延伸閱讀