透過您的圖書館登入
IP:3.146.37.35
  • 學位論文

表面電漿共振儀應用於人體免疫球蛋白檢測之實驗與數值模擬

On the Immunoassay of Human Immunoglobulin using Surface Plasmon Resonance: Experiment and Numerical Simulation

指導教授 : 張正憲

摘要


表面電漿共振儀(Surface Plasmon Resonance)近年來主要應用於生物分子的探測上,其無須標定、非破壞性、高靈敏度、能夠大量檢測與即時監控結合反應等多項優點使其成為最具潛力的生物感測器之一。但近年來在研究上主要以實驗為主,數值模擬部分則略微不足,因此本論文以實驗配合有限元素法數值模擬來相互映證其結果的正確性。 在界面無結合反應中分別量測不同溶液用以了解實驗儀器量測的精確度,配合MATLAB數值軟體模擬發現本實驗儀器在量測共振角變化上有良好的正確性,確認其在量測生物分子結合時的精準度。 接下來在界面結合反應實驗中,我們使用人體免疫球蛋白Human IgG1和Anti-Human IgG1來做為我們的實驗樣品,量測三種濃度來計算出結合速率常數 與解離速率常數 ,但因質量傳輸效應緣故未能滿足[A]bulk=[A]surface的假設,使得實驗所得之反應曲線在與有限元素軟體Comsol Multiphysics所建構的模擬模型所計算出之反應曲線比較時會有明顯的不同,因此我們改善模擬模型與 、 計算方法,之後即獲得改善且與實驗值有良好的相似度,證明改良後的計算方法與模擬模型的正確性。

並列摘要


Surface plasmon resonance (SPR) biosensor has been widely used as the apparatus for the biomolecule detection in the last two decades, since it has several advantages in analyzing the interactions among biomolecules, such as label free, non-destructive, highly sensitive, high throughput, and capable of monitoring dynamic biomolecular interaction in real time. Most of the existing works focused merely on experiments. In this thesis we perform not only the experiments using a home-made angle-detection SPR system but also the numerical simulations based on the FEM software, Comsol Multiphysics v3.3 to study the behavior of the antibody-antigen interaction. In the immunoassay experiments we use human immunoglobulin Human IgG1 and Anti-Human IgG1 as the receptor-ligand pair in PBS buffer solution for the antibody-antigen interaction with the concentration of Anti-Human IgG1 being 50, 25 and 10 , respectively. The response curves of binding reaction are represented as the evolution of SPR angle versus time during the binding of Anti-IgG1 to the immobilized IgG1 on the gold film, under various concentrations of Anti-IgG1. By manipulation of measured data, the association constant and dissociation constant can be extracted in the usual fashion as done in the literature. In numerical simulation, we first perform the transporting analysis of the analyte in the solution along the tubes to obtain the concentration profile of the analyte in the solution at the inlet to the reaction chamber. Then we setup a 3-D model for the reaction chamber and perform the binding reaction simulation based on finite element calculation. The simulated results turn out to be inconsistent with the experimental curves, mainly due to incorrect affinity constants and . A more accurate way to calculate and from the measured data is thus raised. With our corrected and , the simulated curves match quite well with the experimental results.

參考文獻


[70]楊智凱, “電熱力的流場攪拌效應對生物感測器吸附受體效益之數值研究,” 國立台灣大學應用力學研究所碩士論文, 2007
[1]C. R. laversand, and J. S. Wilkinson, “A waveguide-coupled surface plasmon sensor for an aqueous environment,” Sensor and Actuators B 22 (1994) 211-217.
[3]A. Janshoff, H. J. Galla, and C. Strinem, ”Piezoelectric Mass-Sensing Devices as Biosensors - An Alternative to Optical Biosensors” ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 39 (22): 4004-4032 2000
[4]A. M. Moulin, S. J. O’Shea, M. E. Welland, “Microcantilever-based biosensors,” Ultramicroscopy 82 (2000) 23-31
[5]J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54 (1999) 3–15

被引用紀錄


林萱(2012)。利用相位式表面電漿共振系統檢測免疫球蛋白鍵結之應用分析〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-1903201314452587

延伸閱讀