透過您的圖書館登入
IP:18.216.31.88
  • 學位論文

戶外真菌對住宅暴露之貢獻

Contributions of Outdoor Fungi to Residential Exposures

指導教授 : 廖中明

摘要


本研究採用已發表之亞熱帶各時段/季節不同粒徑氣懸真菌量測濃度和氣象數據資料,並結合以相對溼度與生物氣膠氣動直徑和氣懸真菌濃度的函數關係之吸濕成長因子為基礎的不同粒徑室內/室外比模式與區塊理論肺部模式,描述自然通風住家中氣懸真菌濃度室內/室外/人體暴露之關聯性。研究推導指出室內氣懸真菌最大濃度產生之粒徑範圍為0.65~2.5 μm,夏季室外氣懸真菌幾何平均粒徑為2.58 ± 0.37μm,室內則減低為1.91 ± 0.12 μm;而冬季室外為2.79 ± 0.32 μm,室內則減低為1.73 ± 0.10 μm。較高的室內氣懸真菌濃度發生在凌晨2點與晚上8點,兩時段50百分位數值在夏季分別為699和626 CFU m-3,在冬季則為138和99 CFU m-3。在無室內污染源之情況下,夏季氣懸真菌濃度室內/室外比為0.29~0.58,較冬季之0.12~0.16高。夏季肺部各區塊氣懸真菌濃度肺部/室內比,由高至低依序為鼻腔區之0.7 ~ 0.8、氣管/支氣管區之0.41~0.60、細微支氣管區之0.12~0.40和肺泡區之0.01~0.24。最高沈積劑量發生在夏季晚上11點至凌晨5點間,肺泡區塊95百分位數沈積劑量為4600 CFU,其中沈降速率為0.22 CFU s-1。

關鍵字

氣懸真菌 自然通風 溼度 吸濕 生物氣膠 沈降

並列摘要


By using the published temporal/seasonal and particle size distribution of outdoor airborne fungi data and meteorological information in the subtropical climate, we characterized the airborne fungal concentration indoor/outdoor/personal exposure relationships in a wind-induced naturally ventilated residence. We applied a size-dependent indoor/ outdoor ratio model coupled with a compartmental lung model based on a hygroscopic growth factor as a function of relative humidity on aerodynamic diameter of bioaerosol and concentration of fungal spores. We estimated that the maximum concentrations of indoor airborne fungi occurred in the size range of 0.65 - 2.5 μm. The average geometric mean diameters of airborne fungi decreased from outdoor 2.58 ± 0.37 to indoor 1.91 ± 0.12 μm in summer, whereas decreased from outdoor 2.79 ± 0.32 to indoor 1.73 ± 0.10 μm in winter. The higher indoor airborne fungal concentrations occurred in early morning and late afternoon in which median values were 699 and 626 CFU m-3 in summer as well as 138 and 99 CFU m-3 in winter, respectively, at 2 a.m. and 8 p.m. In the absence of indoor sources, summer has higher mean indoor/outdoor ratios of airborne fungal concentration (0.29 – 0.58) than that in winter (0.12 – 0.16). Lung region of extrathoracic (ET) has higher fungal concentration lung/indoor ratios (0.7 – 0.8) than that in bronchial (BB) (0.41 – 0.60), bronchiolar (bb) (0.12 – 0.40), and alveolar-interstitial (AI) (0.01 – 0.24) regions. The highest airborne fungal deposition dose (95th-percentile is 4600 CFU) occurred in 23:00 – 05:00 in summer in region AI with 95th-percentile fungal deposition rate of 0.22 CFU s-1.

參考文獻


68. Liao, C. M., M. Y. Huang, J. W. Chen, and T. J. Chang. 2002. Removal dynamics of airborne road dust in a ventilated airspace. J. Environ. Sci. Health A 37:1009-1027.
2. Abt, E., H. H. Suh, P. Catalano, and P. Koutrakis. 2000. Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environ. Sci. Technol. 34:3579-3587.
3. Airaksinen, M.,J. Kurnitski, P. Pasanen, and O. Seppanen. 2004. Fungal spore transport through a building structure. Indoor Air 14: 92-104.
4. Andersen, I., and J. Korsgaard. 1986. Asthma and the indoor environment: assessment of the health implications of high indoor air humidity. Environ. Int. 12: 121-127.
5. Anjilvel, S., and B. Asgharian. 1995. A multiple-path model of particle deposition in the rat lung. Fundam. Appl. Toxicol. 28:41-50.

被引用紀錄


黃 寧(2010)。居家環境中室外及牆面上真菌對室內空氣真菌濃度之影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.10159

延伸閱讀