透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

基于粒子群最佳化之強健PID控制器設計與應用

Design of a Robust PID Controller Using Particle Swarm Optimization and its Applications

指導教授 : 顏家鈺
共同指導教授 : 王富正(Fu-Cheng Wang)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文提出了一種新的強健控制器設計方法,採用粒子群最佳化(Particle Swarm Optimization,PSO)來合成強健比例-積分-微分(Proportional-Integral-Derivative,PID)控制器。強健控制在處理系統不確定性和干擾的能力是眾所周知。但是,採用傳統Hinf強健控制理論所設計出來的控制器,其往往是高階和複雜的結構,是很難落實在實際應用中。另一方面,PID控制器因為具有結構簡單、可靠性高與控制性能佳等優點,已廣泛應用在不同控制工程領域中,但他們缺乏厚實的理論基礎在處理系統不確定性和干擾。因此,本文結合強健控制理論與PID控制器這兩種控制的優勢,使用粒子群最佳化設計PID結構控制器,使控制系統滿足強健性能。在文中,首先簡要介紹強健控制理論和粒子群最佳化演算法。然後,採用粒子群最佳化來合成強健PID控制器,並使用四個數值例子進行電腦模擬來說明設計程序。最後,將所設計的控制器上應用在質子交換膜燃料電池(PEMFC)控制系統上作實驗驗證,並與傳統的Hinf強健控制器進行比較。從模擬和實驗結果顯示,本文所提出的強健PID控制器是有效的與實用的。

並列摘要


This paper proposes a novel method to synthesize robust proportional-integral-derivative (PID) controllers using particle swarm optimization (PSO). Robust control is well known for its ability in dealing with system uncertainties and disturbances. Standard robust control design, however, can result in controllers that are high-order and complicated and can be difficult to implement in practical applications. PID controllers are advantageous because of their simple structures and wide acceptance in engineering practice, but they lack profound theorems in dealing with system uncertainties and disturbances. Therefore, combining the advantages of these two control algorithms, robust PID-structure controllers are proposed to optimize system performance using PSO. In this work, we first briefly introduce Hinf robust control theory and particle swarm optimization algorithm. Then, the particle swarm optimization algorithm is used to synthesize robust PID controllers and four numerical examples are used to illustrate the design procedures. Finally, the designed controller was implemented on a Proton Exchange Membrane Fuel Cell (PEMFC) control system for experimental verifications and compared with conventional Hinf controllers. From the simulation and experimental results, the proposed robust PID controller is effective and practical.

並列關鍵字

Robust control PID particle swarm optimization PEMFC

參考文獻


[36]周銘城,質子交換膜燃料電池控制及整合,國立台灣大學機械工程研究所碩士論文,2009。
[1]Ziegler, J.G and Nichols, N. B., “Optimum settings for automatic controllers,” Transactions of the ASME, 64. pp. 759–768, 1942.
[2]Hagglund, T., and Astrom, K.J., “Automatic Tuning of PID-Controllers based on dominant pole design,” Proc. IFAC Conference on Adaptive Control of Chemical Processes, Frankfurt, Germany, 1985.
[3]R.C Dorf and R.H. Bishop, Modern Control Systems, Addison-Wesley Publishing Company, 1995.
[4]Atherton, D. P., and Boz, A. F. “Using standard forms for controller design,” Proc. of Control' 98, Swansea, UK, pp. 1066-1071, 1998.

被引用紀錄


陳建國(2016)。複合輪胎力估測器於多動力馬達電動車驅動力矩分配策略之整合應用〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201602498
陳武祺(2015)。多動力馬達電動車兼顧轉向安全之節能動力分配策略〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201600139
吳建維(2014)。手輪馬達式電動輪椅之煞車策略與上坡起步〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.02136
陳佳旻(2014)。複合動力電動車即時節能動力分配策略〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.00541
陳柏叡(2013)。運用粒子群最佳化法於手輪馬達式電動輪椅用交互耦合轉速比控制器設計〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.03108

延伸閱讀