透過您的圖書館登入
IP:18.222.162.216
  • 學位論文

燃料電池系統強韌性分析

Robustness Analyses of PEMFC Systems

指導教授 : 王富正
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文進行一個3kW燃料電池控制系統的研發及強韌性分析,並以此燃料電池為主能源,進行一個燃料電池混和電力系統的初期開發設計。研究主要分兩部分:燃料電池控制與強韌性分析,和混和電力系統整合開發。 在燃料電池控制方面,我們針對3kW燃料電池機組,分別進行氫氣與溫度控制系統之開發,以提升其氫氣使用效率與能量轉換效率。為因應未來燃料電池控制器量產需求,我們與美菲德公司合作,針對產線上多部燃料電池機組進行系統識別,分析其系統變動,並進行強韌控制器之安裝測試與性能分析,驗證所設計之控制系統能夠直接應用於多部機組,不需針對每一個系統設計專屬之控制器。最後我們將控制系統單晶片化,並進行後續的系統整合實驗。 在電力系統整合方面,我們以前述之3kW燃料電池為主要電源,進行燃料電池混和電力系統的初期開發設計。首先以實驗室負載為測試對象,完成燃料電池並聯式混和電力系統之架構規劃。其次,我們搭配直流/直流轉換器設計適當的控制架構,控制燃料電池輸出功率並進行實驗測試,同時進行整合系統之能量效率分析,最後我們在現有的整合架構下,發展Matlab/SimPowerSystem電力系統模型,在不同電力管理策略下,模擬系統運轉效能,作為混和電力系統長時間運轉之測試評估。

並列摘要


This thesis analyzes the robustness of 3kW proton exchange membrane fuel cell (PEMFC) systems, and applies the PEMFC to develop a stationary hybrid power system. This thesis discuss two topics: robustness analysis for PEMFC control, and the development of hybrid power system. First, we apply robust control to control the hydrogen flow rate and temperature of a 3kW PEMFC module, to improve the hydrogen efficiency and energy efficiency, respectively. We cooperate with M-Field to analyze the system variation and gaps of different PEMFC modules in the production line. The result shows that robust controllers designed based on a PEMFC can be directly applied to other PEMFCs to improve performance. That is, we do not need to design a specific controller for each PEMFC, but can implement a general controller for the same type of PEMFC in the production line. We then implement the designed robust controller on a microcontroller to develop the hybrid power system. Second, we use the aforementioned 3kW PEMFC module to build a hybrid power system that is verified in our lab. We develop robust controllers for both the PEMFC and the DC/DC converter to improve system efficiencies, and experimentally verify the performance improvement. We also build a Matlab/SimPowerSystem model and test the effects of different power management strategies. The model can be applied to enhance system efficiency and reduce the fuel consumption, and further used for developing custom-made hybrid power system in the future.

參考文獻


[38]皓恆科技股份有限公司: http://www.biologictek.com.tw/
[1] Cottrell, C.A., Grasman, S.E., Thomas, M., Martin, K.B., & Sheffield, J. W.,”Strategies for stationary and portable fuel cell markets” International Journal of Hydrogen Energy, 36(13) : pp. 7969-7975, 2011
[3]“State of the States: Fuel Cells in America”, Report form Fuel Cells 2000, www.fuelcells.org, April(2010)
[5] Bernardi, D.M. and M.W. Verbrugge, “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,” AiChE Journal, 137(8): pp. 1151-1163, 1991.
[6] Ceraolo, M., Miulli, C., & Pozio, A., “Modelling Static and Dynamic Behaviour of Proton Exchange Membrane Fuel Cells on the Basis of Electro-Chemical Description,” Journal of Power Sources, 113(1): pp. 131-144, 2003.

被引用紀錄


陳柏儒(2017)。智慧綠能混合電力系統元件選擇與最佳化設計〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201702547
蕭奕劭(2016)。結合再生能源及電解產氫之混合電力系統之發展與最佳化設計〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201700219
方為弘(2016)。燃料電池電動車混合電力系統之研發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201603061
陳漢哲(2015)。客製化混合電力系統模型建立與最佳化〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.02898

延伸閱讀