透過您的圖書館登入
IP:52.14.240.178
  • 學位論文

鋼板剪力牆構架耐震性能與數值模型研究

A Study of Seismic Performance and Numerical Modeling for Steel Plate Shear Wall Frames

指導教授 : 蔡克銓

摘要


近年來研究證實鋼板剪力牆構架具有極佳的抗震能力,薄鋼板受剪時雖在承壓方向會挫屈,但在受拉方向能發展出的拉力場進行遲滯消能,少量鋼板即可提供結構顯著的強度、勁度與消能能力,為一種極具經濟價值的結構系統。一般耐震結構系統在設計地震力作用下,為了消散地震能量,需藉由結構主受力桿件產生非線性變形以提供結構消能能力,但對於結構體本身易造成永久變形。為了減少地震作用後結構之殘餘變形,可搭配自復位結構系統,利用梁柱接合處或不同構件之界面處開合行為,結合消能元件以提供結構之能量消散,例如後拉式預力鋼鍵可提供前述界面開合之彈性恢復力,將結構回復至原位,幾乎無殘留變形。 本研究主要著重在以鋼板剪力牆作為主要抗側力系統,並結合自復位型結構進行耐震設計、分析與討論。首先透過在國家地震工程研究中心進行既有自復位鋼板剪力牆的試驗資料,建立並驗證ABAQUS有限元素分析模型,由於此試體之設計原則在最大考量地震下仍保持彈性,因此使用較保守而不經濟的大尺寸柱構件。為了進一步研究適當之構件尺寸設計,本研究透過已驗證之ABAQUS分析模擬技術為基準,作為OpenSees簡化模型的參考依據,建立自復位鋼板剪力牆系統耐震設計流程。最後針對三層樓設計例,使用OpenSees模型進行三等級危害度共60組地震歷時分析,再透過統計方法找出四個地震歷時反應參數平均值,其中在最大考量地震下適當設計三層樓設計例之最大層間位移角平均值為0.028弧度,最大頂層殘餘變形為0.0009弧度。 此外,為了推廣鋼板剪力牆在國內之應用,本研究亦針對含鋼板剪力牆之鋼筋混凝土結構建立ABAQUS有限元素分析模擬技術,使用梁柱元素模擬鋼筋混土構架與殼元素模擬鋼板剪力牆,並與實尺寸兩層含開孔型鋼板剪力牆鋼筋混凝土構架試驗進行驗證。

並列摘要


The Self-centering Steel Plate Shear Wall (SC-SPSW) lateral load resisting system has been developed to provide enhanced seismic performance, including system re-centering in design-level earthquakes. SC-SPSWs utilize post-tensioned (PT) beam-to-column connections to provide frame re-centering under an earthquake excitation. The research aims to develop new, high-performance steel plate shear wall systems and fill the critical knowledge gaps in the understanding steel plate shear wall behavior. The main objective of this research is to advance the technology of utilizing steel plate shear walls (SPSWs) combined with self-centering system on the seismic performance improvement of buildings. The first task of this study is to construct and validate a finite element shell model of SC-SPSW. This paper presents the numerical models using ABAQUS and compare the analytical results with the full-scale SC-SPSW specimen which was tested in NCREE. The column sizes of this specimen was large and overly conservative because it was designed with no boundary frame yielding occurred under the maximum considered earthquake. In this study, these design criteria are modified from 4% or 5% to 3% target drift ratios for the boundary frame. The OpenSees models were constructed, analyzed and validated with the ABAQUS analytical results. The OpenSees nonlinear response history analysis results of the prototype SC-SPSWs show that the proposed design procedure is capable of achieving the intended performance objectives at the median level. Under the maximum considered earthquakes, the medians of the maximum inter-story and roof residual drift ratios are 2.8% ratio and 0.087%, respectively. The second task of this study is to develop and validate the ABAQUS model using shell elements for SPSW and beam-column line elements for a full-scale reinforced concrete frame (SPSW-RCF) specimen tested in NCREE. The PQ-Fiber materials introduced into the SPSW-RCF model with the line element for RC boundary frame have a very good agreement with the test results. It is confirmed that using the line elements for the RC frame instead of using solid elements is an effective and practical approach.

參考文獻


2. AISC (2005a), Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-05, American Institute of Steel Construction, Chicago, IL, USA.
3. AISC (2005b), Specification for Structural Steel Buildings, ANSI/AISC 360-05, American Institute of Steel Construction, Chicago, IL, USA
6. Baldvins, N. M., Berman, J. W., Lowes, L. N., Janes, T. M. and Low, N.A. (2012), “Fragility Functions for Steel Plate Shear Walls,” Earthquake Spectra, 28(2):405-426.
7. Berman, J., and Bruneau, M., (2005), “Experimental Investigation of Light-Gauge Steel Plate Shear Wall,” Journal of Structural Engineering, ASCE, 131(2):259-267.
8. Berman, J. W. and Bruneau, M. (2008) “Capacity design of vertical boundary elements in steel plate shear walls,” Engineering Journal, 45(1):57–71.

被引用紀錄


洪唯竣(2016)。新建雙層含鋼板剪力牆之鋼筋混凝土構架耐震設計與實驗研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201600466

延伸閱讀