透過您的圖書館登入
IP:18.116.40.47
  • 學位論文

區域性地下水系統水流模式率定方法建立與應用-以濁水溪沖積扇為例

Development and Application of Regional Groundwater Numerical Model Calibration Methodology, A Case Study of Chou-Shui River Alluvial Fan

指導教授 : 徐年盛
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究目的為建立一區域性地下水流模式之率定方法,以經驗正交函數法配合地下水流模式之模擬誤差歷線,快速且準確地掌握地面水補注量與水文地質參數之時間與空間分布資訊,並針對地下水系統之地面水補注量以及水文地質參數進行修正,最後將該方法應用於濁水溪沖積扇。 本研究以優選模式建立地下水流數值模式率定方法,首先設定目標函數為使模擬與觀測之蓄水量誤差百分比均方根誤差(RMSE值)最小,其優選模式之決策變數為水平水力傳導係數、垂直滲漏係數以及地面水補注量之時空分布;限制式設定為三條:(1)地面水補注量於率定過程中須符合質量守恆;(2)地下水位之模擬結果須符合地下水流控制方程式;(3)水平水力傳導係數與垂直滲漏係數有一合理範圍之限制。求解流程首先為設定決策變數初始值,輸入地下水流模式進行地下水位之模擬,並計算其目標函數判斷是否達成停止條件,若否則計算蓄水量誤差歷線,並利用經驗正交函數分析地下水流模式之蓄水量模擬誤差歷線,計算決策變數之修正量,以進行地面水補注量與水文地質參數之修正,完成一次迭代過程,經過數次迭代求解達到停止條件後便完成地下水流參數優選模式之率定,獲得地面水淨補注量與水文地質參數之最佳時空分布。 本研究將所建立之參數率定優選模式應用於濁水溪沖積扇地下水流數值模式率定,其地下水流模式之模擬年限為2012年1月至2014年12月,以月為時間單位進行模擬,求解過程中同時針對四層含水層共126個水平水力傳導係數分區、96個垂直滲漏係數分區以及1302個地面水補注量之時空分布進行率定計算修正量。率定結果發現,於優選模式迭代初期,其地下水位模擬誤差RMSE值下降幅度最大,於第5次迭代之後其地下水位模擬誤差RMSE值幾乎呈現較穩定下降狀態,最後於第24次迭代時而達到停止條件,完成模式率定。率定完成之水平水力傳導係數與垂直滲漏係數大多數皆在合理範圍內,其地下水流數值模式能夠準確模擬含水層(一)之水位變化趨勢與豐枯水期地下水位值;含水層(二)至含水層(四)之地下水位模擬結果亦能大致抓到水位變化之趨勢。顯示本研究方法能夠快速且準確的掌握地下水補注量與水文地質參數之時間與空間分布資訊,並反饋回地下水流數值模式中,以獲得準確且良好之地下水流數值模式。

並列摘要


This study is aimed to develop a regional groundwater numerical model calibration method, which applies empirical orthogonal function (EOF) with simulated error hydrograph of groundwater level to quickly and accurately catch and calibrate the temporal-spatial distribuation of surface water recharge and hydrogeological parameters. The established method was applied on the groundwater system of Chou-Shui River Alluvial Fan. The proposed groundwater parameters calibration method is based on an optimization model which the objective function is minimizing the the root mean square error (RMSE) of the simulated and observed average error in groundwater storage. The decision variables are horizontal hydraulic conductivity, vertical leakance and surface water recharge. There are three constraints of the optimization model: (1) the surface water recharge of groundwater system in every iteration of calibrating process must obey the mass balance; (2) the simulated groundwater level must follow the governing equation of groundwater flow; (3) the value of horizontal hydraulic conductivity and vertical leakance are restricted to a reasonable limits. The process of the optimization model sets the initial value of decision variables first, and inputs the variables to groundwater model. Thus, the groundwater level can be simulated and the objective function will be estimated. If the objective function doesn’t satisfy the stop condition, the simulated error hydrograph of groundwater level will be calculated and analyzed with EOF. Then, the modified decision variables is calculater according to the simulated error hydrograph of groundwater level end the result of EOF analysis. From iterations, the optimal temporal-spatial distribuation of surface water recharge and hydrogeological parameters can be obtain. This study applied the optimization model on the calibration of the groundwater system in Chou-Shui River Alluvial Fan. The simulated period is from January 2012 to December 2014 monthly. The total variables of hydraulic conductivity in four acquifers are 126, of vertical leakance are 96. There are 1302 the surface water recharge temporal-spatial distribuation in all stress period. The result show that the RMSE is decreased dramatically in early iteration of the calibration and become smoothly after 5th iteration and finally stop at 24th iteration. The calibrated hydraulic conductivity and vertical leakence are mostly in reasonable limits. The simulated groundwater level can reflect the approximately trendance in all acquifer and can capture the peak of the observed value in first acquifer. Hence, the established method of this study can effectively and accurately calibrate temporal-spatial distribution of surface water recharge and hydrogeological parameters.

參考文獻


6. 謝壎煌、陳忠偉、葉信富、李振誥,「應用河道水位變化評估新虎尾溪地下水補注量之研究」,農業工程學報,第53卷第2期,第50-60頁,2007。
8. 王韋勳,「名竹盆地地下水流數值模式之建立與應用」,2012。
9. 林聖婷,「濁水溪沖積扇補注量與抽水量空間分佈模式建立」,2012。
12. 徐年盛、黃建霖、劉宏仁、李冠緯,「地下水抽補量與參數時空分布率定之方法建立與數值實驗驗證」,農業工程學報,第61卷第3期,第1-28頁,2015。
5. 中興工程顧問股份有限公司,「濁水溪沖積扇地面地下水聯合運用管理模式建立與機制評估」,經濟部水利署中區水資源局委託計畫報告,2007。

被引用紀錄


謝亦歡(2017)。結合主成分分析及經驗正交函數建立區域性地下水數值模式率定方法-以名竹盆地為例〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201703912

延伸閱讀