透過您的圖書館登入
IP:18.221.165.246
  • 學位論文

斜波紋微流道混合器的開發與其在濃度產生器上之應用

Development of a skew corrugated microfluidic mixer and its application on concentration generator

指導教授 : 許聿翔

摘要


在本研究中,提出一創新且具有效率的微流體混合器,並開發一套快速熱翻印製成來製作微流道。利用改變流道的幾何結構,加上微流體的流體特性來設計混合器,透過此混合器來達到快速混合的目標,以達到濃度稀釋、樣本的比例調配等功能。本研究所開發的被動式混合器是在流道內設計斜坡紋檔塊,將斜波紋檔塊置於流道的底部,透過這樣的設計能夠擠壓流體並增加流體的橫向擾動和垂直向擾動,進而提升混合效能,此設計的優勢在於不需外接管路及龐大的驅動來源以進行試劑的混合,且只需進行一次翻模製程,製程簡單且不需進行對位,最後此設計只需要單一驅動幫浦,即可達到微流體的濃度控制功能。為了確認設計的微流道混合結構具有足夠的混合效率,本研究採用有限元素模擬軟體,來模擬微流體在此設計的混合結構是否能高效率的混合,並提出一套系統化的設計和模擬驗證。本研究也提出一套快速熱壓印的製程方式,利用此製程可以快速翻印超薄型微流道,整體微流道晶片流道厚度可到達100微米以下,此可運用在微流體生物晶片上面,結合它低成本和大量製造,且無需外接多餘管線等優勢,能成為微流體生物晶片中的混合單元,以推向市場化形成產業的助力。

並列摘要


In this paper, we present our study on a new type of passive micromixer based on a skew corrugated configuration. Periodic geometrical barriers like washboard were built inside a microfluidic channel that alters the flow patterns transversely and vertically. The advantages of this type of mixer is its mixing barriers are at the bottom of the microfluidic channel, and it does not need a complex 2-D or 3-D configurations to perform mixing process. This micromixer can easily be fabricated by one step SU-8 photolithographic process and one molding process. Solutions to be squeezed vertically and laterally while encounter the periodic barriers. Thus, the laminar flow pattern is distorted to create mixing process. To study the mixing mechanism of the skew corrugated micromixer, we studied 4 different design parameters to optimize the mixing efficiency. Finite element simulation was conducted to study the mixing pattern and efficiency. This study also proposes a rapid hot embossing process that allows rapid reprinting of thin-film microfluidic device, which can reach 100 microns thickness. The developed technology could enable the feasibility to use the presented micromixer and thin-film plastic chip for commercialization.

參考文獻


[1] S. Haeberle, and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab on a Chip - Miniaturisation for Chemistry and Biology, 7(9), 1094-1110 (2007).
[2] X. Xu, S. Zhang, H. Chen et al., "Integration of electrochemistry in micro-total analysis systems for biochemical assays: Recent developments," Talanta, 80(1), 8-18 (2009).
[4] P. Abgrall, and A. M. Gue, "Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem - A review," Journal of Micromechanics and Microengineering, 17(5), R15-R49 (2007).
[5] R. Pal, M. Yang, R. Lin et al., "An integrated microfluidic device for influenza and other genetic analyses," Lab on a Chip - Miniaturisation for Chemistry and Biology, 5(10), 1024-1032 (2005).
[6] A. Folch, " Introduction to BioMEMS," (2012).

延伸閱讀